Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

is there a library storing all kinds of equivalence relations?
https://en.wikipedia.org/wiki/Equivalence_relation
For quotient groups, is there IsEquivalenceRelation and IsEquivalenceClass like gap system?
www.gap-system.org/Manuals/doc/ref/chap33.html
like
f := FreeGroup( "a", "b" );
g := f / [f.1^2, f.2^3, (f.1*f.2)^5];

when i paste words here, most words missing, is there being hacked?

Hi,

 

  Suppose I have a probability distribution function f(x). I would like to generate points in a 

(1) given interval, can be up to infinity

(2) number of points

(3) satisfy the known probability distribution function f(x)

(4) possible other specifications

 

 

  Is there any build-in option in maple I could use? Or I have to write something manually?

 

Thank you very much!

 

I want to calculate

Lim x-->1+ ([X2]-1)/([X]-1)

I let  x=1+c  and  c-->0 then we have [X2]=[c2+2c+1]=[2c]+1

Lim x-->1+ ([X2]-1)/([X]-1) = Lim c-->0+ [2c]/[c]

Maple shows the both limitations equal to zero

I want know how maple claculates it

If there is  an equation or are several equations, I need to obtain all the roots, how can I do???

 

fsolve ? rootfindings? or what?

 

If an examples of actual is given,  That will be perfect  !!!

 

Thanks 

with this simple circuit i found a wrong simulation result : look at the probe 3 value.  someone could help me please ?

The same error i found in this circuit (binary adder)

Given an almost contact metric manifold M(\phi,\xi,\eta, g), we say
that M is a generalized Sasakian-space-form if there exist three functions f1, f2, f3
on M such that the curvature tensor R is given by

R(X,Y)Z=f_1{g(Y,Z)X-g(X,Z)Y}+f_2{g(X,\phiZ)\phiY-g(Y,\phiZ)\phiX+2g(X,\phiY)\phiZ}+f_3{\eta(X)\eta(Z)Y-\eta(Y)\eta(Z)X+gg(X,Z)\eta(Y)\xi-g(Y,Z)\eta(X)\xi}

In (2n+1) dimensional generalized Sasakian space form M2n+1(f_1,f_2,f_3), we have the following relations.

S(X,Y)=(2nf_1+3f_2-f_3)g(X,Y)-(3f_2+(2n-1)f_3)\eta(X)\eta(Y)

S(X,\xi)=2n(f_1-f_3)\eta(X)

C\bar(\xi,X)Y=[f_1-f_3-(r/2n(2n-1))][g(X,Y)\xi-\eta(Y)X]

P(X,Y)Z=R(X,Y)Z-(1/(n-1))[S(Y,Z)X-S(X,Z)Y]

R(X,Y)\xi=(f_1-f_3){\eta(Y)X-\eta(X)Y}

R(\xi,X)Y=(f_1-f_3){g(X,Y)\xi-\eta(Y)X}

for any vector fields X, Y on M, where R, S, C\bar, and r denote the Riemannian curvature tensor, Ricci tensor, concircular curvature tensor and scalar curvature of M2n+1(f1, f2, f3), respectively 

Using above equations I have to evaluate P(C\bar(\xi,X)Y,Z)U.

Manually It is tedious job. Can we find the value by maple? Is there any option to solve these type of problems?

If yes, I can solve many more, which helps a lot in my work.. Thanks in advance.

 

 

My exposure to the topic of Fourier Transforms is very cursory--maybe a few weeks work as part of an undergraduate math course (in an engineering program.) However, I am now returning to the subject for a while and, reading material, noticed that some routines scale the Fourier coefficients differently. So now I am wondering: Why do different routines scale the coefficients differently? If the purpose of the Fourier Transform is to extract the components of circular motion from data, shouldn't it all work out the same?

https://en.wikipedia.org/wiki/Surgery_theory

glue two geometric object

i use maple 17, 

will future version of maple do this?

or which software can do this?

I want to paste a list of points generated by another program into a maple worksheet. 

However, when I paste the list of points into the Maple worksheet, I get a command prompt after each defined point in the list.  Whereby, the executable code will not run.

I need a way to paste the list of points into the worksheet without any command prompts.  Is there a special entry mode?  

 

Here's the list of points I want to paste into the worksheet:

[

[20,0,0],

[20,4,0],

[19,8,0],

[17,11,0],

[14,14,0],

[11,17,0]

],

 

Below is the worksheet code that I want to paste the list of points.

However, when I paste the list of points within the "pointPlot3D" function -- I get a command prompt after each defined point in the list of points.  (So 30 points gives 30 command prompts.)  Whereby, when this code is executed, there is an error.    What I need is a means to paste this list of points into the worksheet WITHOUT the command prompts showing up. 

 

> with(geom3d):

> with(plots):

> sphere1:=(x,y,z,R)->[x+R*cos(phi)*cos(theta),y+R*cos(phi)*sin(theta),z+R*sin(phi)]:

> Explore(display(        

       plot3d(sphere1(0,0,0,Rp),phi=-Pi/2..Pi/2,theta=0..2*Pi),  

               scaling = constrained, axes = boxed, style=wireframe, labels=[x,y,z],                

       pointplot3d(

> [
> [20,0,0],
> [20,4,0],
> [19,8,0],
> [17,11,0],
> [14,14,0],
> [11,17,0]

> ],

               symbol=circle,symbolsize=10)  ),        

       parameters=[Rp=3..20],         initialvalues=[Rp=20] );

 

Hello, I have a similary issue with the following post :

http://www.mapleprimes.com/questions/200835-Algsubs-With-Subscripts-And-Powers

In a constraint equation (in mechanics), I need to make these algebraic substitutions :

--> sqrt(xA1² + yA1²) =rF1 
--> arctan(abs(yA1)/abs(xA1)) = aF1
--> sqrt(xC1^2+yC1^2) = rBTP
--> arctan(abs(yC1)/abs(xC1))=a1

I try to do it with this code :

ListAlgsubs:={sqrt(xA1^2+yA1^2)=rF1,sqrt(xA2^2+yA2^2)=rF2,sqrt(xA3^2+yA3^2)=rF3, sqrt(xA4^2+yA4^2)=rF4,arctan(abs(yA1)/abs(xA1))=aF1,-arctan(abs(yA2)/abs(xA2))=aF2,pi+arctan(abs(yA3)/abs(xA3))=aF3,pi-arctan(abs(yA4)/abs(xA4))=aF4,sqrt(xC1^2+yC1^2)=rBTP,arctan(abs(yC1)/abs(xC1))=a1};
for i from 1 to nops(ListAlgsubs)
do Branch1Cons:=applyrule(op(i,ListAlgsubs),Branch1Cons)
end do:
Branch1Cons:= simplify(Branch1Cons);

I have tried with algsubs or applyrule but it wasn't successfull in both cases.

Do you have an idea how can I do to simplify my expressions ? and namely conduct a good use of applyrule function

I join an extract of my code in order to facilitate the troubleshooting.

example.mw

Thanks a lot for your help.

Dears, When I run calculation in Maple I found an error in matrices. See the file

 

Hi, I have 10 equation system and 10 unknown variables. I however, want to reduce the equations to 2 with two unknowns. I'm wondering how this could be done in maple. The variables are Y, q, yd, y*, yx, H,  pd, w, P and Pv. I intend to solve the equations for Y and w. 

Thanks in advance for your help. The maple file has also been attached.

 

Regards

Small_Open_Economy.mw

 

 

restart; Digits := 10; F[0] := 0; F[1] := 0; F[2] := (1/2)*A; T[0] := 1; T[1] := B; M := 2; S := 1; Pr := 1

for k from 0 to 12 do F[k+3] := (-3*(sum((k+1-r)*(k+2-r)*F[r]*F[k+2-r], r = 0 .. k))+2*(sum((r+1)*F[r+1]*(k+1-r)*F[k+1-r], r = 0 .. k))+M*(k+1)*F[k+1]-T[k])*factorial(k)/factorial(k+3); T[k+2] := (-3*Pr*(sum((k+1-r)*F[r]*T[k+1-r], r = 0 .. k))-S*T[k])*factorial(k)/factorial(k+2) end do:

(1/630)*x^7*A*B+(1/8064)*x^9*A*B-(121/1209600)*x^10*A^2*B+(19/369600)*x^11*A*B-(11/725760)*x^12*A^2*B+(97/19958400)*x^12*A*B^2+(1/12)*x^4*A-(1/24)*x^4*B+(1/120)*x^5*A^2+(1/180)*x^6*A-(1/720)*x^6*B-(1/630)*x^7*A^2-(13/40320)*x^8*A^3+(11/20160)*x^8*A-(11/40320)*x^8*B-(19/60480)*x^9*A^2-(1/45360)*x^9*B^2+(391/3628800)*x^10*A+(37/604800)*x^10*A^3-(23/1814400)*x^10*B-(41/39916800)*x^11*B^2+(229/13305600)*x^11*A^4-(439/7983360)*x^11*A^2+(197/21772800)*x^12*A-(883/159667200)*x^12*B+(29/1520640)*x^12*A^3+(1/2)*A*x^2-(1/6)*x^3-(1/120)*x^5-(1/1680)*x^7-(11/362880)*x^9-(23/2661120)*x^11

(1)

print(expand(t)):

1-(20747/79833600)*x^12*A*B+(29/1680)*x^7*A^2*B-(451/241920)*x^10*A^3*B-(2507/14515200)*x^12*A^3*B+(2921/13305600)*x^11*A*B^2-(33/4480)*x^8*A*B+(761/403200)*x^10*A*B+(1/48)*x^6*A*B-(1/8)*x^4*A*B+(977/887040)*x^11*A^2*B+(1349/4838400)*x^12*A^2*B^2-(1/1152)*x^9*A^2*B-(11/7560)*x^9*A*B^2-(37/44800)*x^10*A^2+(223/604800)*x^10*B^2+(47/633600)*x^11*A-(7913/19958400)*x^11*B+(193/6652800)*x^11*B^3+(1409/1478400)*x^11*A^3-(4813/53222400)*x^12*B^2-(167/221760)*x^12*A^2+(3/40)*x^5*A+(1/30)*x^5*B+(1/240)*x^6*B^2-(1/560)*x^7*A-(23/2520)*x^7*B-(43/4480)*x^8*A^2-(1/896)*x^8*B^2+(61/13440)*x^9*A+(31/22680)*x^9*B-(1/6)*B*x^3+B*x+(2573/95800320)*x^12-(1/2)*x^2+(1/24)*x^4-(13/720)*x^6+(11/8064)*x^8-(2143/3628800)*x^10

(2)

solve({limit(numapprox:-pade(t, x, [2, 2]), x = infinity) = 0., limit(numapprox:-pade(diff(f, x), x, [2, 2]), x = infinity) = 1}, {A, B});

{A = -.7359903327, B = 1.324616408}, {A = -0.7307377025e-1+2.009578912*I, B = .3744177908+.5971332133*I}, {A = .6936483785+.1660915631*I, B = .1622123331+.9257041678*I}, {A = -2.182873922*I, B = .8203849935*I}, {A = .3431199285*I, B = 1.783825109*I}, {A = -.6936483785+.1660915631*I, B = -.1622123331+.9257041678*I}, {A = 0.7307377025e-1+2.009578912*I, B = -.3744177908+.5971332133*I}, {A = .7359903327, B = -1.324616408}, {A = 0.7307377025e-1-2.009578912*I, B = -.3744177908-.5971332133*I}, {A = -.6936483785-.1660915631*I, B = -.1622123331-.9257041678*I}, {A = 2.182873922*I, B = -.8203849935*I}, {A = -.3431199285*I, B = -1.783825109*I}, {A = .6936483785-.1660915631*I, B = .1622123331-.9257041678*I}, {A = -0.7307377025e-1-2.009578912*I, B = .3744177908-.5971332133*I}

(3)

solve({limit(numapprox:-pade(t, x, [3, 3]), x = infinity) = 0., limit(numapprox:-pade(diff(f, x), x, [3, 3]), x = infinity) = 1}, {A, B});

{A = 4.154051132, B = 17.13248053}, {A = .5466914672+.2697341397*I, B = .1291930705+.9494499975*I}, {A = .4506017673+.3824137679*I, B = -.2437153257+1.192091322*I}, {A = .5458260296+.5776530367*I, B = .3085138074+1.260130057*I}, {A = .3007754662+.5799020019*I, B = 0.8347381159e-1+1.033103936*I}, {A = .3916946210+1.036293227*I, B = .9202208108+1.239552889*I}, {A = .1349186305+.5994923360*I, B = 1.926737919+1.099451808*I}, {A = .5141206762+2.582294380*I, B = -.7917198503+.5287783790*I}, {A = 1.669898274*I, B = 1.659206265*I}, {A = 3.170666197*I, B = -.6372670837*I}, {A = -.5141206762+2.582294380*I, B = .7917198503+.5287783790*I}, {A = -.1349186305+.5994923360*I, B = -1.926737919+1.099451808*I}, {A = -.3916946210+1.036293227*I, B = -.9202208108+1.239552889*I}, {A = -.3007754662+.5799020019*I, B = -0.8347381159e-1+1.033103936*I}, {A = -.5458260296+.5776530367*I, B = -.3085138074+1.260130057*I}, {A = -.4506017673+.3824137679*I, B = .2437153257+1.192091322*I}, {A = -.5466914672+.2697341397*I, B = -.1291930705+.9494499975*I}, {A = -4.154051132, B = -17.13248053}, {A = -.5466914672-.2697341397*I, B = -.1291930705-.9494499975*I}, {A = -.4506017673-.3824137679*I, B = .2437153257-1.192091322*I}, {A = -.5458260296-.5776530367*I, B = -.3085138074-1.260130057*I}, {A = -.3007754662-.5799020019*I, B = -0.8347381159e-1-1.033103936*I}, {A = -.3916946210-1.036293227*I, B = -.9202208108-1.239552889*I}, {A = -.1349186305-.5994923360*I, B = -1.926737919-1.099451808*I}, {A = -.5141206762-2.582294380*I, B = .7917198503-.5287783790*I}, {A = -1.669898274*I, B = -1.659206265*I}, {A = -3.170666197*I, B = .6372670837*I}, {A = .5141206762-2.582294380*I, B = -.7917198503-.5287783790*I}, {A = .1349186305-.5994923360*I, B = 1.926737919-1.099451808*I}, {A = .3916946210-1.036293227*I, B = .9202208108-1.239552889*I}, {A = .3007754662-.5799020019*I, B = 0.8347381159e-1-1.033103936*I}, {A = .5458260296-.5776530367*I, B = .3085138074-1.260130057*I}, {A = .4506017673-.3824137679*I, B = -.2437153257-1.192091322*I}, {A = .5466914672-.2697341397*I, B = .1291930705-.9494499975*I}

(4)

 

Download D.T.M.mw

restart:

with(student):

with(plots):

with(plots):

Digits := 19:

inf := 28.5:

equ1 := diff(f(eta), eta, eta, eta)+3*(diff(f(eta), eta, eta))*f(eta)-2*(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+theta(eta) = 0;

diff(diff(diff(f(eta), eta), eta), eta)+3*(diff(diff(f(eta), eta), eta))*f(eta)-2*(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+theta(eta) = 0

(1)

equ2 := diff(theta(eta), eta, eta)+3*Pr*f(eta)*(diff(theta(eta), eta))+S*theta(eta) = 0;

diff(diff(theta(eta), eta), eta)+3*Pr*f(eta)*(diff(theta(eta), eta))+S*theta(eta) = 0

(2)

FNS := f(eta), theta(eta);

f(eta), theta(eta)

(3)

s := 0:

BC := f(0) = s, (D(f))(0) = 0, (D(f))(inf) = 1, theta(0) = 1, theta(inf) = 0;

f(0) = 0, (D(f))(0) = 0, (D(f))(28.5) = 1, theta(0) = 1, theta(28.5) = 0

(4)

CODE := [M = 2, Pr = 1, S = 1]:

S1 := dsolve({BC, subs(CODE, equ1), subs(CODE, equ2)}, {f(eta), theta(eta)}, type = numeric):

S1(0)

[eta = 0., f(eta) = 0., diff(f(eta), eta) = 0., diff(diff(f(eta), eta), eta) = .7424080874401649594, theta(eta) = 1.000000000000000000, diff(theta(eta), eta) = .9438662130843066161]

(5)

NULL

NULL

 

Download shooting_method.mw

Thank you so much for your time. Here's the real problem

f'''(η) + 3f(η)f''(η) - 2[f'(η)] 2 + θ(η) - m*f'(η) = 0

θ''(η) + 3*Pr*f(η)θ'(η) + s*θ(η) = 0

Boundary conditions are:

at η=0: f(η)=f'(η)=0; θ(η)=1;

as η→∞ f'(η)=1; θ(η)=0;

Where m = magnetic parameter (in this case taken as 2)

S = shrinking parameter (in this case taken as 1)

Pr = taken as 1 too

I haven't been able to solve this using differential transforms method (i.e getting the values of f''(0) and θ'(0) denoted by A and B respectively) but shooting method works just fine. :( I seriously need help with this. Thanks you in advance.
I've attached my codes above and i'm hoping someone helps me out real soon. thanks very one.

First 224 225 226 227 228 229 230 Last Page 226 of 363