509 Reputation

12 years, 28 days

One way: a procedure...

You can write a procedure to automatise your calculations as:

restart:Dif:=proc(f1,f2,x,q,n); print(diff(diff(f1,x)+f1,x)); diff((diff(f2,q)+diff(f1,x,x)*diff(f2,x)),q\$n); end proc;

g:=x->cos(x)-1:

h:=y->y^3*cos(y)-x:

Dif(g(x),h(y),x,y,2);

fsolve...

restart:fsolve((500*.87)*(1-(1/x)^.2385)-(288*(x^.3174-1))/(.85), x);

1

evalhf...

restart: y:=false: evalhf(y); y:=true: evalhf(y); x:=3: evalhf(x<2); evalhf(x>2);

see ? evalhf

Tangent...

Perhaps, you mean a think like this:

restart: with(Student[Calculus1]):ode := diff(y(x),x,x) = 2*y(x) + 1;

ics := y(0)=1, D(y)(0)=0;

dsolve({ode,ics});

Tangent(rhs(%), -1.5, view = [-2..1, DEFAULT], output = plot);

Indexing a variable...

This occur when using a variable w and indexing the same variable.

Example: w and w[h]. theta and theta[h].

You should use for w[h] another variable like ww[h] and for theta[h] another variable like phi[h].

Some errors...

restart: conv:= unapply(int(x(tau)*h(t-tau),tau),x,h,t,tau);

Y[1]:=H(omega)*X(omega);

with(IntegrationTools):

Y[2]:=conv(Y[1],Y[1],omega,sigma1);

Y[3]:=conv(Y[2],Y[1],omega,sigma2);

Y[3]:=Change(Y[3],{sigma1=z1,sigma2=z1+z2});
Y[5]:=conv(Y[2],Y[3],omega,sigma5);

Change(Y[5],{sigma1=z1,sigma5=z1+z2}); #In Y[5], you have only sigma1 and sigma5 to be changed﻿

allvalues(%)...

You should solve your system with:

restart: eq1:=y=2*x^2-5*x+3: eq2:=y=x^3+4*x-3: solve({eq1,eq2},{x,y}); allvalues(%);

In the ReadMe.txt, you can find there is two ways to de what you want

clearing variables or using assuming not...

In my opinion, the first way is clearing variables:

restart: assume(x,real): y:=x; x:='x': y:=x;

Or using assuming

restart: y:=x assuming x::real; # compute the value of an expression under assumption

exp(1)...

evalf(exp(1)); #work

?exp

limit(exp(x/T),x=infinity) assuming T>0;...

If T negatif

limit(exp(x/T),x=infinity) assuming T<0;

or...

restart:with(plots):F1:=plot(x^2, x=0..1, y=-1..1, color="NavyBlue", thickness=3, filled=[color="Blue", transparency=0.5]):G1:=plot(x^3, x=0..1, y=-1..1, color="NavyBlue", thickness=3, filled=[color="White", transparency=0.5]): F2:=plot(x^2, x=-1..0, y=-1..1, color="NavyBlue", thickness=3, filled=[color="Blue", transparency=0.5]):G2:=plot(x^3, x=-1..0, y=-1..1, color="NavyBlue", thickness=3, filled=[color="Blue", transparency=0.5]):
> display({F1,F2,G1,G2});

mod...

Hi

565 mod 5656;

565

56 mod 565;

56

Then x=565 and 56

You can do this...

with(plots):F:=plot(x^2, x=0..1, y=0..1, color="NavyBlue", thickness=3, filled=[color="Black", transparency=0.5]):
> G:=plot(x^3, x=0..1, y=0..1, color="NavyBlue", thickness=3, filled=[color="White", transparency=0.5]):
> display({F, G});

piecewise function and procedure...

restart: p:=x->piecewise(x<2,0,x>=2,x-2);﻿

p(3);

1

F := proc (x) -int(p(x), x); end proc;

subs(x=2,F(x));

plot(evalf(F(x)),x=0..4);

 5 6 7 8 9 Page 7 of 9
﻿