Carl Love

Carl Love

28015 Reputation

25 Badges

12 years, 298 days
Himself
Wayland, Massachusetts, United States
My name was formerly Carl Devore.

MaplePrimes Activity


These are replies submitted by Carl Love

You have a bug in your second constraint set. You refer to a vector Supply which hasn't been defined. I assume that you mean the vector RegionA. This is what I used in my Answer below.

So x is a 3D array. You've probably figured out by now that x can be declared in Maple via

x:= Array(1..n, 1..k, 1..r);

I understand squaring of individual elements of x. Indeed, the 1st part of your TSS formula is the sum of the squares of all elements of x, which can be done in Maple simply as add(x^~2) (note the tilde ~). But I don't know what you mean by the "squares" of "slices" of x, such as in your SS_P formula x[i, .., ..]^2/(k*r). I think that what you likely mean is the squares of the means (averages) of various rows, columns, planes of x. In that case, we'd need to first add the subsection of x, divide by the number of elements, then square the result.

@Tamour_Zubair I think that something can be done, but I think that you might have made a mistake in entering the system. One of Z_0(t)Z_1(t)Z_2(t) seems to be "extra". Did you really intend for the system to contain all three?

@acer Since acer couldn't upload his worksheet (due to limitations of MaplePrimes), here is a transcription:

restart;
with(Student:-Calculus1): with(DocumentTools): with(DocumentTools:-Layout):

P:=VolumeOfRevolution(2*x^2+1,x=0..1,volumeoptions=[color= ["Niagara 1"],
                      transparency=0.5],orientation=[0,90,0],labels=[z,x,y],
                      view=[-1..1,-2..2,0..3],output=plot,axis=vertical,
                      scaling=constrained):
P;

InsertContent(Worksheet(Group(Output(Textfield(InlinePlot(
   subsindets(plots:-display(P,size=[600,500]),'specfunc'(_TYPESET),
              u->_TYPESET(Typesetting:-Typeset~([op(u)])[])),
   ':-scale'=1.9,ytrans=2)))))):

 

@achreftabet The integral in your photo is a definite integral with respect to theta. Thus, its value cannot depend on theta.

@Christian Wolinski Christian, I'd appreciate any comments that you have on my Answer. It seems to me that it fulfills your two long-standing requests: 1) detecting overloads, and 2) undoing them.

@vs140580 Why haven't you first tried the simplest thing, which happens to also be the correct thing in this case?:

AnyOp:= proc(`&op`, F1, F2) 

I don't know where you got the idea below. It's not valid Maple syntax. Perhaps you are confusing Maple with some other language:

AnyOp:= proc(`&op`, Function::F1, Function::F2)

 

@tomleslie I can confirm that 11 Maple 10 worksheets are on the textbook's website that you linked. They're in a Google Drive folder that apparently one must request access to. The worksheets seem to have been posted in 2015.

@tomleslie The Question above does contain an uploaded worksheet/document; it's not a "picture". But for some reason the download link is missing. I guess the OP deleted the link by mistake.

Here's some major improvements to the above:

  • made predicate into a formal type
  • packaged as a module
  • eliminated false positives caused by deeply embedded overloads
  • allow extraction of just the member procedures
  • member procedures have their option overload made inert
     

    Some Simple Tools for Manipulating Overloaded Procedure

    Author: Carl Love <carl.j.love@gmail.com> 2022-Jun-19

     

    Goals:

    1. The ability to detect whether a procedure is constructed as an overload. (Note that the result of the overload command is nominally type procedure.)

     

    2. The ability to deconstruct an overload into an inert form that can be reconstructed with value. 

     

    3. The ability to extract the component procedures with their option overload declarations suppressed.

     

    :
    restart
    :

    kernelopts(version);

    `Maple 2022.1, X86 64 WINDOWS, May 26 2022, Build ID 1619613`

    OverloadTools:= module()
    option
        package,
        `Author: Carl Love <carl.j.love#gmail.com> 2022-Jun-19`
    ;
    local
        #Some abbreviations:
        `&<`:= curry,  `&>`:= rcurry,
        `&I`:= cat &< _Inert_,  `&SF`:= specfunc @ `&I`,

        ModuleLoad:= proc($)
        uses TT= TypeTools;
            if TT:-Exists(overload) then TT:-RemoveType(overload) fi;
            TT:-AddType(
                overload,
                P-> P::procedure and
                    membertype((&I STATSEQ)(&SF OVERLOADLIST), ToInert(eval(P)))
            );
            return
        end proc
    ;
    export
        UnOverload:= (P::overload)->
        local OPTS:= 3; #op-index of proc options
            indets(
                subsindets(
                    subsindets(
                        ToInert(eval(P)),
                        &SF OPTIONSEQ,
                        subs &< ("overload"= "%overload")
                    ),
                    &SF OVERLOADLIST,
                    %overload
                        @ %applyop~ &<
                            ((op@subs) &< (%overload= overload) @ `[]`, OPTS)
                        @ [FromInert]
                        @ op
                ),
                specfunc(%overload)
            )[-1],

        ExtractProcs:= (DC::%overload(list(specfunc(%applyop))))->
            ((op &< (-1))~ @ op)(DC)
    ;
        ModuleLoad()
    end module
    :

    #Example:

    Collatz:= overload([
        proc(n::And(posint, even), $) option overload; n/2 end proc,
        proc(n::And(posint, odd), $) option overload; 3*n+1 end proc,
        proc(n::algebraic, $) 'Collatz'(args) end proc
    ]):
    lprint[2](eval(Collatz));

    overload([proc( n::And(posint,even), $ )
        option overload;
        1/2*n;
    end proc, proc( n::And(posint,odd), $ )
        option overload;
        3*n+1;
    end proc, proc( n::algebraic, $ )
        ('Collatz')(_passed);
    end proc])

    with(OverloadTools);

    [ExtractProcs, UnOverload]

    type~([Collatz, x-> x], overload);

    [true, false]

    #Simple test cases:
    N:= [22, 11, n]
    :
    Collatz~(N);

    [11, 34, Collatz(n)]

    #Deconstruct:
    Decon:= UnOverload(Collatz);
    lprint[2](Decon):

    %overload([%applyop(`@`(proc () options operator, arrow; (`@`(op, subs))(%overload = overload, args) end proc, `[]`), 3, proc (n::(And(posint, even)), ` $`) option %overload; (1/2)*n end proc), %applyop(`@`(proc () options operator, arrow; (`@`(op, subs))(%overload = overload, args) end proc, `[]`), 3, proc (n::(And(posint, odd)), ` $`) option %overload; 3*n+1 end proc), %applyop(`@`(proc () options operator, arrow; (`@`(op, subs))(%overload = overload, args) end proc, `[]`), 3, proc (n::algebraic, ` $`) ('Collatz')(args) end proc)])

    %overload([%applyop((() -> (op@subs)(%overload = overload,_passed))@`[]`,3,proc
      ( n::And(posint,even), $ )
        option %overload;
        1/2*n;
    end proc), %applyop((() -> (op@subs)(%overload = overload,_passed))@`[]`,3,proc
      ( n::And(posint,odd), $ )
        option %overload;
        3*n+1;
    end proc), %applyop((() -> (op@subs)(%overload = overload,_passed))@`[]`,3,proc
      ( n::algebraic, $ )
        ('Collatz')(_passed);
    end proc)])

    #If you want just the procedures...
    CzProcs:= ExtractProcs(Decon);
    lprint[2]~(CzProcs):

    [proc (n::(And(posint, even)), ` $`) option %overload; (1/2)*n end proc, proc (n::(And(posint, odd)), ` $`) option %overload; 3*n+1 end proc, proc (n::algebraic, ` $`) ('Collatz')(args) end proc]

    proc( n::And(posint,even), $ )
        option %overload;
        1/2*n;
    end proc
    proc( n::And(posint,odd), $ )
        option %overload;
        3*n+1;
    end proc
    proc( n::algebraic, $ )
        ('Collatz')(_passed);
    end proc

    #Verify extracted procs work like originals:
    apply~(CzProcs, N);

    [11, 34, Collatz(n)]

    #Reconstruct the overload from its deconstruction:
    Collatz2:= value(Decon);
    lprint[2](eval(Collatz2));

    proc () [proc (n::(And(posint, even)), ` $`) option overload; (1/2)*n end proc, proc (n::(And(posint, odd)), ` $`) option overload; 3*n+1 end proc, proc (n::algebraic, ` $`) ('Collatz')(args) end proc] end proc

    overload([proc( n::And(posint,even), $ )
        option overload;
        1/2*n;
    end proc, proc( n::And(posint,odd), $ )
        option overload;
        3*n+1;
    end proc, proc( n::algebraic, $ )
        ('Collatz')(_passed);
    end proc])

    #Verify it works like the original:
    Collatz2~(N);

    [11, 34, Collatz(n)]

     

  •  

    Download OverloadTools.mw

@vs140580 The limitation of your Excel is that the number of columns must be less than 256. So how is writing row-by-row going to help with that? Did you intend for there to be 256 columns or 16 columns? If 16, then it's trivial to correct it in Maple. For example, instead of sending to Excel, you could send A[.., ..16] (if the 1st 16 columns have the numbers that you want).

@vs140580 For the situation you now describe, the variables ABC, etc., are not needed, and I recommend that you not use them. All that you need is

for i to n do OutMat[i]:= F(M[i]) od;

where and OutMat are matrices with n rows (they don't need the same number of columns) and takes vector input and produces vector output.

By the way, the word doubt in your most-recent Reply's title should be question. I mention this because if you use doubt that way, it could be misunderstood as slightly offensive, and I doubt that that was your intention.

@Christopher2222 The context menu works for that. For example, enter 

20.*Unit(MPa);

select (i.e., mouse-highlight) the output, right click, choose Convert Output Units, enter psi in the Enter Unit field (the other fields can be ignored), and click Okay.

What you're experiencing is an issue with the display (the display only, not the computation) of all vectors and matrices above a certain size; it's not specific to unit conversion. In other words, all the computations (unit conversions in this case) have been done and are stored in the vector, but that vector is not being shown (or shown completely) on your screen. The default number of rows (r) or columns (c) shown is 10. You can change that setting with the command

interface(rtablesize= [r, c]):

where r and c are nonnegative integers or infinity. This only needs to be done once per session (i.e., per restart).

@Earl Yes, MaplePrimes might have a problem with the worksheet name; try removing the underscores.

First 87 88 89 90 91 92 93 Last Page 89 of 708