## 100 Reputation

6 years, 130 days

## MaplePrimes Activity

### These are questions asked by Dark Energy

Maple 2018

Hello my friends

I have some problems with maple 18. I try to consider and extract some things about tensor such as contraction.

for instance, suppose we have metric=-exp(alpha(r))*(dt^2)+exp(beta(r))*(dr^2)+r^2*(dtheta^2)+r^2*(sin(theta)^2)*(dphi^2). how we can find all Riemann tensor and corresponding contraction, Ricci tensor and its contraction and even Weyl tensor and its contraction. unfortunately, I attempt to find them by using some other examples on the net but they don't help me to calculate them when time is the first element in coordinate, not last ( t,r,theta,phi) not (r,theta,phi)

thanks with the best regard

## Likelihood function and finding some con...

Maple 2018

Hello Friends

I have a critical problem that I wish to solve it with maple

suppose we have a list like following: y_obs=(2,4,8,7,9,52,35,478,52) and corresponding variance σy=(.2,.3,.5,.87,.1.2,.22,.78,.99,1.5)
we know y as the function of x described such as y_theoric=x+p and minimizing X is

X=Sigma [(y_theoric-y_obs)^2]/σy which includes the sum of nine numbers...

the question is:

How we can find p from likelihood function and plot general behavior of y versus of x through two above series?

for example this solution used in article under the names Hubble parameter data constraints on dark energy by Yun Chen and Bhatra Ratra (Physics Letters B)

Thank you

## How to find suitable initial condition...

Maple 2018

Hello my friends

I have a problem with initial condition for below system of differential equation

sys := {6*(diff(a(t), t))^2+12*a(t)*(diff(a(t), t\$2))-3*a(t)^2*phi(t)^(-2*c)*sqrt(1-alpha*(diff(phi(t), t))^2), 2*c*a(t)^3*phi(t)^(-2*c-1)*sqrt(1-alpha*(diff(phi(t), t))^2)-3*alpha*a(t)^2*phi(t)^(-2*c)*(diff(a(t), t))*(diff(phi(t), t))/sqrt(1-alpha*(diff(phi(t), t))^2)-alpha*a(t)^3*phi(t)^(-2*c)*(diff(phi(t), t\$2))/sqrt(1-alpha*(diff(phi(t), t))^2)+2*c*alpha*a(t)^3*phi(t)^(-2*c-1)*(diff(phi(t), t))^2/sqrt(1-alpha*(diff(phi(t), t))^2)-alpha^2*a(t)^3*phi(t)^(-2*c)*(diff(phi(t), t))^2*(diff(phi(t), t\$2))/(1-alpha*(diff(phi(t), t))^2)^(3/2), R(t) = 6*((diff(a(t), t))^2/a(t)^2+(diff(a(t), t\$2))/a(t)), W(t) = -phi(t)^(-2*c)*sqrt(1-alpha*(diff(phi(t), t))^2)/(1/a(t)^3+a(t)^3+phi(t)^(-2*c)/sqrt(1-alpha*(diff(phi(t), t))^2))}

I set {c,alpha}={1,1} but initial conditon is problem ... since I got the following message from maple to illustrate diagrams of W(t), a(t) and even phi(t)

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

with the best regard

## nonlinear differential equation...

Maple 18

hello my friends

I have a critical problem to solve below the system of differential equations

-(9/14)*R(t)^(19/14)-(285/196)*(diff(R(t), t, t))/R(t)^(9/14)+(2565/2744)*(diff(R(t), t))^2/R(t)^(23/14) = -k*(4*lambda+1/a(t)^3)

and R(t) = 6*((diff(a(t), t))^2/a(t)^2+(diff(a(t), `\$`(t, 2)))/a(t))

I need to find form of a(t) numerically from set of differential equatios

plz help me as soon as possible

 1 2 3 4 Page 4 of 4
﻿