Kitonum

21435 Reputation

26 Badges

17 years, 27 days

MaplePrimes Activity


These are answers submitted by Kitonum

In your example incorrect syntax. The name  f(x)   should be assigned  to  the expression  x^2+1 .  Then all works. The maximum value of this expression can be found exactly (not approximately) by  maximize  command:

f(x) := x^2+1;

Xmax:=maximize(f(x), x=0..10);

plot(f(x)/Xmax, x=0..10);

For  b=0.1  the problem can easily be solved exactly. It is interesting to compare exact and numerical solutions (with numeric option).

b:=0.1:  L:=[seq(x, x=0...1, 1/10)];

dsolve({(x+b*y(x))*diff(y(x), x) + y(x) =0, y(1)=1});

seq(eval(rhs(%),x=L[i]), i=1..nops(L));

evalf[18]([%]);

 

 

Let diagonally for  i=3 .. m+3  as in your example are the same numbers (elements of the list  L ).

Matr1 := proc(m, L) 

local s;

s := {seq(seq((i, j) = L[j-i+3], j = i-2..i+2), i = 3 .. m+3), (1, 2) = 1, (1, 3) = 4, (1, 4) = 1, (2, 2) = -1, (2, 4) = 1, (m+4, m+2) = -1, (m+4, m+4) = 1, (m+5, m+2) = 1, (m+5, m+3) = 4, (m+5, m+4) = 1};

Matrix(m+5, s);

end proc:

Example for  m=5:

Matr1(5, [6, 2*x, 3, 4, 9]);

 

 

According to the problem, the roots must be different. The result may be easily verified graphically. And the initial problem itself also can be solved graphically.

sol:=[m, -3*m+2, -m-3, 2*m+1]:

solve({max(sol) > 0, mul(j, j = sol) > 0, sol[1] <> sol[2], sol[1] <> sol[4], sol[3] <> sol[2], sol[3] <> sol[4], min(sol) < 0}, m);

plot([m, -3*m+2, -m-3, 2*m+1], m = -5 .. 5, -8 .. 10, color = [red, blue, green, yellow], thickness=2);

 

 

You seem to have missed the element  a[4,2] .

The procedure  Matr  solves your problem, for any  m>=0 .

Matr := proc(m)

local s;

s := {seq(seq((i, j) = a[j-3, i-3], j = i-2 .. i+2), i = 3 .. m+3), (1, 2) = 1, (1, 3) = 4, (1, 4) = 1, (2, 2) = -1, (2, 4) = 1, (m+4, m+2) = -1, (m+4, m+4) = 1, (m+5, m+2) = 1, (m+5, m+3) = 4, (m+5, m+4) = 1};

Matrix(m+5, s);

end proc:

 

Your example:

Matr(3);

 

Another example:

interface(rtablesize=20):
Matr(7);

 

 

 

Use the command  Student[VectorCalculus][LineInt]

An example:

 

A:=plot(sin(x), color=red,legend="Sin"):

B:=plot(cos(x), color=blue, legend="Cos"):

C:=plot(tan(x), color=green, legend="Tan", discont=true):

E:=plot([seq([Pi/2+Pi*k, t, t=-3..3], k=-1..2)],color=black, linestyle=2, legend=["Asymptote"$4]):

plots[display](A,B,C,E, thickness=2,view=[-Pi/2..5*Pi/2, -3..3], scaling=constrained);

 

Corrections in the last line and result:

plots[implicitplot]('IC(2, x, y, 1, 1)', x = .1 .. .9, y = -1 .. 1, filled = true, numpoints = 10);

#  or  plots[implicitplot]((x,y)-> IC(2, x, y, 1, 1), .1 .. .9, -1 .. 1, filled = true, numpoints = 10);

 

x := 5.180070098;

y := -8.852276351;

k := 10.25650636;

 f := s->piecewise(0 < s and s <= 2, (1+I*k/y)*((1+I*k/x)*exp(I*x*s)/(1-I*k/x)+exp(-I*x*s))/(1-I*k/y), 2 < s and s <= 5, exp(-(2*I)*x)*((1+I*k/y)*exp(I*y*(s-2))/(1-I*k/y)+exp(-I*y*(s-2))), 5 < s and s <= 7, exp(-(3*I)*y)*((1+I*k/x)*exp(I*x*(7-s))/(1-I*k/x)+exp(-I*x*(7-s))), 7 < s and s <= 10, (1+I*k/x)*((1+I*k/y)*exp(I*y*(10-s))/(1-I*k/y)+exp(-I*y*(10-s)))/(1-I*k/x)):

a := s->abs(f(s));

 plot(a, 0..10, discont = true);   #  or  plot('a(s)', s=0..10, discont = true);

Simplify your code, your functions  f  and  g  are the same. The plotting was done on separate points with step= 0.01.

x := 5.180070098;

y := -8.852276351;

k := 10.25650636;

 f := s->piecewise(0 < s and s <= 2, (1+I*k/y)*((1+I*k/x)*exp(I*x*s)/(1-I*k/x)+exp(-I*x*s))/(1-I*k/y), 2 < s and s <= 5, exp(-(2*I)*x)*((1+I*k/y)*exp(I*y*(s-2))/(1-I*k/y)+exp(-I*y*(s-2))), 5 < s and s <= 7, exp(-(3*I)*y)*((1+I*k/x)*exp(I*x*(7-s))/(1-I*k/x)+exp(-I*x*(7-s))), 7 < s and s <= 10, (1+I*k/x)*((1+I*k/y)*exp(I*y*(10-s))/(1-I*k/y)+exp(-I*y*(10-s)))/(1-I*k/x)):

a := s->abs(f(s));

X := [seq(s, s = 0 .. 10, 0.01)]:

Y := [seq(a(s), s = 0 .. 10, 0.01)]:

 plot(X, Y, discont = true);

 

 

with(combinat):

L:=[1,2,3]:

L1:=permute(L, 1);

L2:=permute(L, 2);

L3:=permute(L, 3);

M:=[]:

for i in L3 do

for j in L2 do

for k in L1 do

M:=[op(M), [i,j,k]]:

od: od: od:

nops(M); op(M);

 

 

In the example I used the same matrices as Markiyan:

with(LinearAlgebra):

A:=Matrix([[-93, -72], [-76, -2]]):

C:=Matrix([[-98, 57], [-77, 27]]):

E:=Matrix([[-38, 87], [-18, 33]]):

Id:=IdentityMatrix(2):

fsolve(Determinant(A-lambda*C.Id-lambda^2*E.Id), lambda,complex);

           -11.36829371, -.3123524009-1.257844764*I, -.3123524009+1.257844764*I, .8872292854

The next version works:

restart;
for a from 0 to 10 do
A := Matrix([[a, 0], [0, 0]]):
if LinearAlgebra[Equal](A^2, A) then print(a, A) end if;
end do:

r:=[a,b,c]:

[seq(lambda-r[i]^2, i=1..3)];

I assumed that the sign of inequality is >= 0. The following simple procedure solves your problem.

P:=proc(alpha, beta)

if beta=-1 then error "0 in denominator" fi;

if alpha=0 then {k>0} else allvalues(solve({alpha*beta*(1-alpha)*k^(alpha-1)/(1+beta)-1-(2*alpha-1)*alpha*(1-alpha)*beta*k^(2*(alpha-1))/(1+beta)+alpha^2*k^(alpha-1)>=0, k>=0}, k))  fi;

end proc:

Examples:

P(1/2, 3),  P(7, 1/2),  P(3, 5),  P(1, 3);

 

 

First 263 264 265 266 267 268 269 Last Page 265 of 289