Kitonum

21540 Reputation

26 Badges

17 years, 112 days

MaplePrimes Activity


These are answers submitted by Kitonum

If you need to write this as an inert sum (not for calculation, but for example for a presentation), then you can do it like this:

restart;
2^(k+1)*Sum(sqrt((2*r-1)*(2*s-1))*psi[n*(M+1)+s](t), s=`and`(1,(s+r)::odd) .. r-1) ;

                     

 

I can not confirm your claim. In Maple 2018 we have:

0^0;
limit(x^x, x=0);
plot(x^x, x=0..2, 0..4);
                                        

 

PS. I just noticed that you have a very old version of Maple (20 years ago). Since then, this error has long been corrected.

You can use inert sqrt  %sqrt  or  ``(...)  construction:

ex:=sqrt(x)/2/h;
ex1:=%sqrt(ex^2);  
# Or
ex2:=sqrt(``(ex^2));

#  Examples of use
simplify(ex1) assuming h>0;  # Or
value(ex1) assuming h>0;  # Or
simplify(expand(ex2)) assuming h>0;
 

A way:

restart;
assign(seq(seq(m[i,j]=x^i*y^j, j=1..5), i=1..5)):
w:=m[2,3]+m[3,2];
v:=m[1,5]-3*m[2,2]+2*m[3,4];

Output:                       
                                 
                                


 

restart;
eq1:= alpha*diff(f(eta),eta$3)+f(eta)*diff(f(eta),eta$2)-diff(f(eta),eta)^2+1:
eq2:= diff(h(eta),eta$2)+f(eta)*alpha*diff(h(eta),eta)-diff(f(eta),eta)*h(eta):
eq3:= diff(H(eta),eta) = h(eta):
bc:= f(0)=0, D(f)(0)=0, D(f)(6)=1, h(0)=0, D(h)(6)=1, H(0)=0:
A1:= [seq(dsolve(
     eval({eq||(1..3), bc}, alpha=a),
     numeric, method= bvp[midrich], abserr = 1e-10, output= operator
), a=[6,7,8,9])]:
for i from 1 to 4 do
psi:= unapply(eval(x*f(eta)+H(eta), A1[i]), (x,eta)):
print(plots:-contourplot(psi[i](x,eta), x= 0..6, eta= 0..6, title=typeset("alpha", "=",[6,7,8,9][i]), titlefont=[times,18]));
od:
 

 

 

 

 

 


 

Download cp.mw

Yes, we can plot the entire graph without using differential equations according to the following plan:

1. First, we plot the graphs of  f , g , h of the implicit functions, from which we find the maximum range for  t - variable, so that there are real values of  x , y , z.

2. Then, with step = 0.01, we solve the equations for these variables. For every  t  we get  2 values of  x , 2 values of  y  and 1 value of  z .

3. Thus we get 4 branches of the entire graph and plot them.

The final result:

                    

All the codes in the attached file.

curves_4.mw

 

x , y, z  variables are specified by the equations f , g , h  implicitly. These equations have real solutions not for every  t = 0 .. 2*Pi. This is clearly seen from the graphs of implicit functions. For example, from the graph  f , we see that for  t>3.48...  and  t<2.2...  there are no real solutions:

plots:-implicitplot(f, t=0..2*Pi, x=-10..10, gridrefine=5, view=[0..2*Pi, -1.5..1.5]);
                         


Edit.

 

 

 

You can get an symbolic approximate value of this integral by expanding the integrand in a series in powers of  x :

restart;
S:=12*x^3*c[2]+6*x^2*c[1]+x^2*exp(x^3*c[2])*exp(x^2*c[1]):
P:=convert(series(S, x=0, 10), polynom);
int(P, x = 0..1);
                 
           

In  s:=LowerCase(s):  line of your procedure there are 2 errors at once:

1. You can not assign anything to formal parameters in the body of a procedure.

2. Strings can not act as names.
 

Here are 2 examples:
It does not work:
P:=proc(x::string)
uses StringTools;
x:=UpperCase(x);
%;
end:
P("y");

But it works:
P1:=proc(x::string)
local s;
uses StringTools;
s:=UpperCase(x);
s;
end:
P1("y");


Edit.
 

f:=x->x^2*sqrt(25-x^2):
a:=0.: b:=5.: n:=100: h:=(b-a)/n: S:=0:
for j from 0 to n-1 do
S:=S+(f(a+j*h)+f(a+(j+1)*h))/2*h;
end do:
S;

restart;
with(plots):
local gamma:
g:=2:
rr:=3:
V1:=arrow([0.5,0], [-4.5,0], width=[0.006, relative=false], head_width=[0.07, relative=false], head_length=[0.2, relative=false], view=[-4..4,-1..1]):
V2:=arrow([1.5,0],[2.5,0], width=[0.006, relative=false], head_width=[0.07, relative=false], head_length=[0.2, relative=false], view=[-4..4,-1..1]):
Seg:=plot(0, x=1/g+0.1..rr/g-0.1, color=black, thickness=7):
C:=plot([[0.55,0],[1.45,0]], style=point, color=black, symbol=circle, symbolsize=14):
L:=plot([[0,t,t=-0.04..0.04],[1,t,t=-0.04..0.04],[2,t,t=-0.04..0.04]], color=black, thickness=5):
T:=textplot([[0,-0.15,0],[1,-0.15,1],[0.55,-0.15,1/gamma],[1.45,-0.15,r/gamma],[2,-0.15,r]], font=[times,bold,16]):
display(V1,V2,Seg, C, L, T, size=[800,400], axes=none);

   Output:

             

 

     

restart;
y1:=-1;
y2:=eval(y, solve({y=x, x=2-y^2, x>0}));
int(1, [x=y..2-y^2, y=y1..y2]);
                                                            

 

x,y := 1,2;
x%+y=x+y;
                                               

 

Replace  sum  by  add . Now it works:

restart;                                                                  
with(plots):                                                               
g:=(x,y)->sin(Pi*(x+y))*(x^2+y^2);                                        
q:=(n,k,l,x,y)->binomial(n,k)*binomial(n-k,l)*(((1+x)/2)^k)*(((1+y)/2)^l)*(1-((1+x)/2)-((1+y)/2))^(n-k-l) ;

 K:=(n,x,y)->(((1+n)*(2+n))/4)*add(add(q(n,k,l,x,y)*int(int(q(n,k,l,t,u)*g(t,u),u=-1..-t),t=-1..1),l=0..n-k),k=0..n);  

p1:=plot3d(g(x,y),x=-1..1,y=-1..-x,color=blue):                           
p2:=plot3d(K(1,x,y),x=-1..1,y=-1..-x,color=brown):                        
p3:=plot3d(K(2,x,y),x=-1..1,y=-1..-x,color=yellow):                       
p4:=plot3d(K(5,x,y),x=-1..1,y=-1..-x,color=green):                        
p5:=plot3d(K(10,x,y),x=-1..1,y=-1..-x,color=red):                                                              
display([p1,p2,p3,p4,p5]);

 

 

restart;
int(eval(2*x^i*(x+n)^m*sqrt(-x^2+x), n=0), x = 0 .. 1);
int(2*x^i*(x+n)^m*sqrt(-x^2+x), x = 0 .. 1) assuming n>=1;
                                      

First 122 123 124 125 126 127 128 Last Page 124 of 290