Kitonum

21445 Reputation

26 Badges

17 years, 41 days

MaplePrimes Activity


These are answers submitted by Kitonum

restart:

with(plots):

f:=2*x:

g:=x^2: 

h:=unapply(piecewise( 0<=x and x<= 5, f, 5<x and x <= 10, g ), x):

A:=[1,2,8]:

h_table_A:=map(h,A);

                                         h_table_A := [2, 4, 64]

 

Addition: another way (without  unapply)

restart:

with(plots):

f:=x->2*x:

g:=x->x^2:

h:=x->piecewise( 0<=x and x<= 5, f(x), 5<x and x <= 10, g(x) ) :

A:=[1,2,8]:

h_table_A:=map(h,A);

Or:

ans:=solve({alpha = (1/2)*lambda*alpha*Pi, beta = (1/2)*lambda*beta*Pi}, lambda);

assign(ans);

lambda^6,  lambda^8;

                    

 

 

local Prime:

Prime:= proc (a, b)

local i, p, r;

p := {};

r :={} ;

for i from a to b do

   if isprime(i) then p := p union {i} ;

     if type(sqrt(p[-1]-1), integer) then r := r union {p[-1]} end if; end if;

end do;

p, r;

end proc:

 

Your example:

Prime(1, 10);

                       {2, 3, 5, 7}, {2, 5}

 

Another example:

Prime(1, 100);

   {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}, {2, 5, 17, 37}

I guess that you are interested only real solution:

RealDomain[solve](convert({0.001=x*exp(0.6/(n*0.026)), 0.01=x*exp(0.68/(n*0.026))}, fraction),{x,n});

evalf(%);

 

 

n[1] := 1.5:  n[2] := 1:

sin(theta[g]):='n[2]'/'n[1]' = cat(convert(n[2], symbol)/convert(n[1], symbol), `=`, `0`, n[2]/n[1]);

                                

 

 

Also, the initial value for  P  should be   instead of  1.

 

I think it is more natural to use a formula instead of loops, for example as in Wiki

restart;

f:=x->2^x:

M:={-2,-1,0,1,2}: n:=nops(M):

L:=(i,x)->normal(mul((x-j)/(M[i]-j), j=M minus {M[i]})):

P:=add(f(M[i])*L(i,x), i=1..n);

plot([f(x), P], x=-2..2, color=[red,blue]);

 

 

 

We see that the approximation is very good (the graphics are almost identical).

You can prevent the calculation of  ln(1.5)  just treating  1.5  as a symbol:

diff(`1.5`^x,x);

                   

y:=sin(x):  y1:=x*sin(x):

maximize(y, x=0..Pi);

evalf(maximize(y1, x=0..Pi));

Optimization[Maximize](y1, x=0..Pi);

                                             1

                                   1.819705741

        [1.81970574115965, [x = 2.02875783126017]]

eq1:=x^2-y^2=a*z^2:

eq2:=x-y=a*z:

factor(eq1/eq2);

              x + y = z

S:={seq(seq(i*j, i=7..9997,10), j=1..9991,10)}:  # The set of all the products in increasing order

S[1..10];  # The first 10 products

S[-10..-1];  # The last 10 products

                                                 {7, 17, 27, 37, 47, 57, 67, 77, 87, 97}

{99580117, 99580297, 99580377, 99580437, 99680087, 99680207, 99680247, 99780057, 99780117, 99880027}

 

B:=[A1,A10,A11,A12,A2,A3,A4,A5,A6,A7,A8,A9]:

sort(B,(x,y)->parse(convert(x,string)[2..-1])<parse(convert(y,string)[2..-1]));

                 [A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12]

restart;

w:=1+t/100:

sol:=dsolve({diff(x(t),t$2)+w^2*x(t)=0, y(t)=diff(x(t),t), E(t)=0.5*(y(t)^2+w^2*x(t)^2), J(t)=E(t)/w, x(0)=1, D(x)(0)=2}, {x(t),y(t),E(t),J(t)}, numeric):

 plots[odeplot](sol, [[t,E(t)], [t,J(t)]], t=0..10, color=[red,blue], thickness=2, legend=['E(t)','I(t)']);

                           

 

 

restart;

N:={F=1, K=1.2}:

Eq:= diff(C(x),x$2)-F*diff(C(x),x)-F*K*C(x)=0:

Bcs:=  F*D(C)(0)=C(0)-1, D(C)(1)=0:

Sol:= dsolve(eval({Eq, Bcs}, N), C(x));

assign(%);

plot(C(x), x=0..3, 0..3, color=red, thickness=2);

 

 

f:=x->1/4*x^3-x^2-x+4;

op(map(t->[t,f(t)], {solve(f(x))}));

                  

 

 

Rewrite your equation as follows

cos(x)=(sin(x)*sin(x/1000))/x

It is easy to show that  abs((sin(x)*sin(x/1000))/x)<=1/1000  and therefore the roots of your equation (except x=0) are very close to the roots of the equation  cos(x)=0 . You can easily find any number of roots of your equation, taking as the intervals ends (for each root of your equation) the successive roots of  the equation sin(x)=0

 

For example, here are the first 10 positive roots:

seq(fsolve(x*cos(x)-sin(x)*sin(x/1000), x=Pi*k .. Pi*(k+1)), k=0 .. 9);

seq(fsolve(cos(x), x=Pi*k .. Pi*(k+1)), k=0 .. 9);  # For comparison


1.569796328, 4.711388984, 7.852981645, 10.99457431, 14.13616697, 17.27775964, 20.41935232, 23.56094499, 26.70253767, 29.84413036

1.570796327, 4.712388980, 7.853981634, 10.99557429, 14.13716694, 17.27875959, 20.42035225, 23.56194490, 26.70353756, 29.84513021

 

First 201 202 203 204 205 206 207 Last Page 203 of 289