Kitonum

21540 Reputation

26 Badges

17 years, 110 days

MaplePrimes Activity


These are answers submitted by Kitonum

You do not have to convert these numbers into polar form, can immediately build these points:

z0 := sqrt(3)+I;
z1 := -1+I*sqrt(3);
z2 := -sqrt(3)-I;
z3 := 1-I*sqrt(3);

Points := seq(plots[pointplot]([Re(z||i), Im(z||i)], color = red, symbol = solidcircle, symbolsize = 15), i = 0 .. 3):
Names := seq(plots[textplot]([Re(z||i)+.2, Im(z||i), cat('z', i)], color = blue, font = [TIMES, ROMAN, 16]), i = 0 .. 3):

plots[display](Points, Names);

 

 

Of course, the same can be build by  plots[polarplot]  command:

restart; 

z0 := sqrt(3)+I: 
z1 := -1+I*sqrt(3): 
z2 := -sqrt(3)-I: 
z3 := 1-I*sqrt(3): 

Points := plots[polarplot]([seq([abs(z||i), argument(z||i)], i = 0 .. 3)], style = point, color = red, symbol = solidcircle, symbolsize = 15):

Names := seq(plots[textplot]([Re(z||i)+.2, Im(z||i), cat('z', i)], color = blue, font = [TIMES, BOLD, 16]), i = 0 .. 3):

plots[display](Points, Names);

 

 

Your body is limited to 5 surfaces:

1. y=x  and  y=-x  - two planes (green).

2. x^2+y^2+z^2 = 4  and  x^2+y^2+z^2 = 9  - two spherical surface (yellow).

3. z = sqrt(x^2+y^2)  -  conical surface (cyan).

All surfaces are defined by the parametric equations:

 

A:=plot3d([r*cos(t)/sqrt(2),r*cos(t)/sqrt(2),r*sin(t)], r=2..3, t=Pi/4..Pi/2, color=green):

B:=plot3d([-r*cos(t)/sqrt(2),r*cos(t)/sqrt(2),r*sin(t)], r=2..3, t=Pi/4..Pi/2, color=green):

C:=plot3d([r*cos(t),r*sin(t),r], r=2/sqrt(2)..3/sqrt(2), t=Pi/4..3*Pi/4, color=cyan):

E:=plot3d([2*cos(phi)*sin(theta),2*sin(phi)*sin(theta),2*cos(theta)], phi=Pi/4..3*Pi/4, theta=0..Pi/4, color=yellow):

F:=plot3d([3*cos(phi)*sin(theta),3*sin(phi)*sin(theta),3*cos(theta)], phi=Pi/4..3*Pi/4, theta=0..Pi/4, color=yellow):

plots[display](A,B,C,E, F, view=[-2.5..2.5,0..2.5,0..3.5],scaling=constrained, axes=normal, orientation=[25,75], labels=[x,y,z]);

 

 

 

You must use the geometric meaning of the definite integral. Your integral is precisely the area of a quarter of a circle of radius 4, because the plot of the function  f(x)=sqrt(16-x^2), x=-4..4, is the upper semicircle of the radius 4.

The name of a function or expression should be  name  type. But

type(omega^2, name); 

                     false

 

Instead of  omega^2  you can write  `omega^2`

type(`omega^2`, name);

                      true 

restart;

plots[implicitplot](x^3+y^3-3*x*y=0, x=-3..3, y=-3..3, thickness=2, gridrefine=4);

 

 

I believe this is the simple way:

[7,9,1]:

add(%[i]*10^(i-1), i=1..nops(L));

                       197

Should be  add  instead of  sum . Write as follows:

Omega := n-> R^n*P(n, z/R)*ln(r)+R^n*add((2*n-4*i+1)*P(n-2*i, z/R)/(i*(2*n-2*i+1)), i = 1 ..

(1/2)*(n-(n mod 2))) ;

restart;

ee := -ln(-a/(b-c)):

ff:=combine(ee) assuming a/(c-b)>0;

gg:=op(1, ff);

subs(gg=numer(gg)/denom(gg), ff);

 

 

In your expression you forgot to put the separators (colons or semicolons).

restart;

m := 2:

k := 1.0931:

a := k-m:

b := k+m-1:

z := k*m/10^(.1*10):

simplify((10^(.1*yo))^((b-a+2*p-1)*(1/2))*z^((b-a+2*p+1)*(1/2))*GAMMA((1/2)*(1-b+a-2*p))/(p!*GAMMA(p-a+1)*GAMMA(1+(1/2)*(1-b+a-2*p))));

[seq(limit(%, p = k), k = 0 .. 10)];

 

 

 

 

Example:

cat(op(0, A[1]), op(A[1]));

                  A1

The inequality  a<b<c  is equivalent to  a<b and b<c . The last entry may be used to manipulate in Maple with this inequality and for its solution.

Example:

x/3-1>1 and x/3-1<5;  #  It's equivalent to 1 < x/3-1 < 5

map(x->3*x, %);  #  Both inequalities are multiplied by 3

solve(%);

 

 

In older versions there are 2 ways. You can convert all constants to symbols 

`2`+`3`;

or use double quotes

``(2)+``(3) ;

In general case it is impossible. For a given matrix  C  there are infinitely many matrices A and B, such that C = AB . For example  C=I.C=(I/2).(2C)  and so on (here  I  is identity matrix). 

When all matrices have a size  2 times 2 and the matrix  C  is known, then to find the matrices and  B, such that C = AB, we must solve a nonlinear system of 4 equations with 8 unknowns. In general case, the set of solutions of the system is 4-dimensional manifold in the 8-dimensional space.

In one line:

map(t->t^2, [0,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]);

 

Of course, your problem is easily solved in the usual brute force method:

N:=0:

for n from 1 to 2013 do

if (irem(n, 3)=0 and irem(n+1, 4)=0) or (irem(n, 4)=0 and irem(n+1, 3)=0) then N:=N+1 fi;

od:

N;

                                                                     336

 

More interesting to get the number of such pairs in any  RealRange(a, b) .

Here is the formula solving this problem:

restart;

N:=(a,b)->floor((b-4)/12)+floor((b-9)/12)-ceil((a-3)/12)-ceil((a-8)/12)+2;

 

Examples:

N(1,2014),  N(1, 1000000),  N(1000, 10000);

                              336, 166667, 1500

 

First 227 228 229 230 231 232 233 Last Page 229 of 290