Kitonum

21830 Reputation

26 Badges

17 years, 220 days

MaplePrimes Activity


These are answers submitted by Kitonum


 

restart

A := binomial(n, k)

`assuming`([limit(A*(lambda/n)^k*(1-lambda/n)^(n-k), n = infinity)], [lambda > 0, lambda < n, k::posint])

lambda^k/(GAMMA(k)*k*exp(lambda))

(1)

simplify(convert(%, factorial))

lambda^k*exp(-lambda)/factorial(k)

(2)

`assuming`([limit(eval(A*(lambda/n)^k*(1-lambda/n)^(n-k), k = 0), n = infinity)], [lambda > 0, lambda < n])

exp(-lambda)

(3)

``


 

Download Poisson.mw

Edit.


 

restart

A := binomial(n, k); assume(p >= 0, p <= 1)

binomial(n, k)

(1)

E := sum(A*p^k*(1-p)^(n-k)*k, k = 0 .. n)

(p/(1-p)+1)^n*p*n*(1-p)^n/((1-p)*(p/(1-p)+1))

(2)

E := simplify(E)

p*n

(3)

simplify(sum(A*p^k*(1-p)^(n-k)*(k-E)^2, k = 0 .. n))

-p*n*(-1+p)

(4)

subs(-1+p = -q, %)

p*n*q

(5)

NULL


 

Download simpl_new.mw


Edit.

You can easily get the explicit formula for this sequence:

rsolve({y(0)=(-sqrt(5)+5)*(1/8), y(n)= 4*y(n-1)*(1-y(n-1))}, y(n));


 

restart;
A[0] := 0;                      
A[1] := sqrt(2*(k[1]^2-w[1]^2))/n;
A[2] := sqrt(2*(k[2]^2-w[2]^2))/n;
c[1] := 1;
c[2] := 1;
c[3] := 1;
c[4] := 1;
c[5] := 1;
c[6] := 1;
k[1] := 10.5;
k[2] := 3.5;
w[1] := 5.05;
w[2] := .5;
m := 1.9;
n := 1.75;
xi[1] := -t*w[1]+x*k[1];
xi[2] := -t*w[2]+x*k[2];
a := m/sqrt(2*(k[1]^2-w[1]^2));
b := m/sqrt(k[2]^2-w[2]^2);
g := a*(c[2]*exp(a*xi[1])+c[3]*exp(-a*xi[1]));
h := c[1]+c[2]*exp(a*xi[1])+c[3]*exp(-a*xi[1]);
G := b*(c[5]*exp(b*xi[2])+c[6]*exp(-b*xi[2]));
H := c[4]+c[5]*exp(b*xi[2])+c[6]*exp(-b*xi[2]);
u := A[0]+A[1]*g/h+A[2]*G/H;

0

 

(2*k[1]^2-2*w[1]^2)^(1/2)/n

 

(2*k[2]^2-2*w[2]^2)^(1/2)/n

 

1

 

1

 

1

 

1

 

1

 

1

 

10.5

 

3.5

 

5.05

 

.5

 

1.9

 

1.75

 

-5.05*t+10.5*x

 

-.5*t+3.5*x

 

.1459402733

 

.5484827558

 

.1459402733*exp(-.7369983802*t+1.532372870*x)+.1459402733*exp(.7369983802*t-1.532372870*x)

 

1+exp(-.7369983802*t+1.532372870*x)+exp(.7369983802*t-1.532372870*x)

 

.5484827558*exp(-.2742413779*t+1.919689645*x)+.5484827558*exp(.2742413779*t-1.919689645*x)

 

1+exp(-.2742413779*t+1.919689645*x)+exp(.2742413779*t-1.919689645*x)

 

7.439442594*(.1459402733*exp(-.7369983802*t+1.532372870*x)+.1459402733*exp(.7369983802*t-1.532372870*x))/(1+exp(-.7369983802*t+1.532372870*x)+exp(.7369983802*t-1.532372870*x))+2.799416849*(.5484827558*exp(-.2742413779*t+1.919689645*x)+.5484827558*exp(.2742413779*t-1.919689645*x))/(1+exp(-.2742413779*t+1.919689645*x)+exp(.2742413779*t-1.919689645*x))

(1)

plot3d(u, x = -20 .. .20, t = -20 .. .20);
t := 0;
plot(u, x = -15 .. 15);
 

 

0

 

 

 


 

Download plots.mw

And what if you just write a single line of code that does the same thing without any packages and plot components :

Explore(plot(sin(a*x)+cos(b*x^2), x=0..10, -3..3), a=0..1., b=0..1.);
                    

 

I removed the square brackets that you use to group expressions. To do this, Maple should use only parentheses. Brackets are used to create lists. Some corrections were also made to improve the quality of the graphs:


 

restart;
A[0] := 0;                           
A[1] := sqrt(2*(k[1]^2-w[1]^2))/sqrt(lambda);                             
A[2] := sqrt(2*(k[2]^2-w[2]^2))/sqrt(lambda);                             
c[1] := 1;
c[2] := 1;
c[3] := 1;
c[4] := 1;
c[5] := 1;
c[6] := 1;
k[1] := 10.5;
k[2] := 3.5;
w[1] := 5.05;
w[2] := .5;
m := 1.9;
lambda := 1.75;
xi[1] := -t*w[1]+x*k[1];
xi[2] := -t*w[2]+x*k[2];
a := m/sqrt(k[1]^2-w[1]^2);
b := m/sqrt(k[2]^2-w[2]^2);
g := a*(c[2]*cos(a*xi[1])-c[3]*sin(a*xi[1]));
h := c[1]+c[2]*sin(a*xi[1])+c[3]*cos(a*xi[1]);
G := b*(c[5]*cos(b*xi[2])-c[6]*sin(b*xi[2]));
H := c[4]+c[5]*sin(b*xi[2])+c[6]*cos(b*xi[2]);
u := A[0]+A[1]*g/h+A[2]*G/H;
  

0

 

(2*k[1]^2-2*w[1]^2)^(1/2)/lambda^(1/2)

 

(2*k[2]^2-2*w[2]^2)^(1/2)/lambda^(1/2)

 

1

 

1

 

1

 

1

 

1

 

1

 

10.5

 

3.5

 

5.05

 

.5

 

1.9

 

1.75

 

-5.05*t+10.5*x

 

-.5*t+3.5*x

 

.2063907138

 

.5484827558

 

.2063907138*cos(1.042273105*t-2.167102495*x)+.2063907138*sin(1.042273105*t-2.167102495*x)

 

1-sin(1.042273105*t-2.167102495*x)+cos(1.042273105*t-2.167102495*x)

 

.5484827558*cos(.2742413779*t-1.919689645*x)+.5484827558*sin(.2742413779*t-1.919689645*x)

 

1-sin(.2742413779*t-1.919689645*x)+cos(.2742413779*t-1.919689645*x)

 

9.841457496*(.2063907138*cos(1.042273105*t-2.167102495*x)+.2063907138*sin(1.042273105*t-2.167102495*x))/(1-sin(1.042273105*t-2.167102495*x)+cos(1.042273105*t-2.167102495*x))+3.703280398*(.5484827558*cos(.2742413779*t-1.919689645*x)+.5484827558*sin(.2742413779*t-1.919689645*x))/(1-sin(.2742413779*t-1.919689645*x)+cos(.2742413779*t-1.919689645*x))

(1)

plot3d(u, x = -10 ..0.2, t = -10 .. 0.2, view=-50..50, grid=[200,200]);
 

 

plot(eval(u,t=0), x = -15 .. 15, -50..50, numpoints=5000, discont, size=[800,400]);

 

 


 

Download 2plots.mw

is(expand(B*exp(I*Pi/3))=expand(A));
                                                                   
 true

# Or

factor(expand(A/B));
polar(%);


Edit.
 

sum(2^k, k=0..n);
                                               
2^(n+1)-1

# Check for n=5
sum(`2`^k, k=0..5)=sum(2^k, k=0..5);
                             
2^5+2^4+2^3+2^2+2+1 = 63

We see that  63=2^6-1

This result  2^(n+1)-1  is the same as your answer, because  2*2^n-1 2^(n+1)-1

The imaginary unit in Maple should be coded as  I  (not as i). i is just a symbol in Maple.

Re((1+I)^2); 
Im((1+I)^2);

                                           0
                                           2

You can use  plots:-inequal  command:

restart;
A:=plot(sin(x), x=-3*Pi/4-0.3..9*Pi/4+0.3, color=red, thickness=3):
B:=plot(cos(x), x=-3*Pi/4-0.3..9*Pi/4+0.3, color=blue, thickness=3):
C:=plots:-inequal((y-cos(x))*(y-sin(x))<0, x=-3*Pi/4..9*Pi/4, y=-1.2..1.2, color=yellow):
plots:-display(A,B,C, scaling=constrained, size=[1000,300]);
         


Addition. The  plots:-inequal  command especially useful when a plane region is given by inequalities of the form  F(x,y)<0  or  F(x,y)>0 . Here is an example of painting over the regions obtained by different intersections of three circles:

with(plots):
C1:= (x+sqrt(7))^2+y^2-16: 
C2 := x^2+(y-3)^2-9: 
C3 := (x-4)^2+y^2-25:
Range:=x=-7..9.5, y=-5.5..6.5:
P:=implicitplot([C1,C2,C3], Range, color=black, thickness=2):
R1:=inequal({C1<0,C2<0,C3<0},  Range, color=blue, nolines):
R2:=inequal({{C1<0,C2<0},{C1<0,C3<0},{C2<0,C3<0}},  Range, color=yellow, nolines):
R3:=inequal({{C1<0,C2>0,C3>0},{C1>0,C2<0,C3>0},{C1>0,C2>0,C3<0}}, Range, color=green, nolines):
display(P,R1,R2,R3, scaling=constrained, size=[600,500]);
                 


 

restart

"P(t):=(r*Q[inf])/(2+2 cosh(b-r*t));"

proc (t) options operator, arrow, function_assign; r*Q[inf]/(2+2*cosh(b-r*t)) end proc

(1)

"Q(t):=(&int;)[0]^(t)P(t) &DifferentialD;t assuming real;"

proc (t) options operator, arrow, function_assign; `assuming`([int(P(t), t = 0 .. t)], [real]) end proc

(2)

value(Q(t))

(1/2)*Q[inf]*tanh((1/2)*b)-(1/2)*Q[inf]*tanh(-(1/2)*t*r+(1/2)*b)

(3)

 


 

Download Hubbert-new.mw

Maybe the following is what you want:


 

restart;
v := 145000;
thetavn := (1/6)*Pi;
omegac := .1;
x:=omegac*t;
s := cos(2*thetabn)*x+2*sin(thetabn)^2*sin(x);
plots:-implicitplot(s = 0, t = -200 .. 200, thetabn = 43*Pi*(1/180) .. 88*Pi*(1/180), tickmarks = ["decimalticks","piticks"], gridrefine = 4, size = [800, 600]);

145000

 

(1/6)*Pi

 

.1

 

.1*t

 

.1*cos(2*thetabn)*t+2*sin(thetabn)^2*sin(.1*t)

 

 

 


 

Download plot.mw

Edit.

I fixed only 1 line:

GAUSSIAN_new.mw

When calculating the derivative of a function at a point, it is better to use the differentiation operator  D  than  eval  command (simpler and more compact syntax). For example:

eval(diff(x^2,x), x=2.5);
D(x->x^2)(2.5);
                                                 
5.0
                                                 5.0


In your example, you are trying to differentiate the function at points where it is not defined. See:

restart;
y := x-> (1-Heaviside(x-0.10e-1))*(cos(9.0218219*x)-.99533285*sin(9.0218219*x)-.99999991*cosh(9.0218219*x)+.99533285*sinh(9.0218219*x))+(Heaviside(x-0.10e-1)-Heaviside(x-0.418e-1))*(.24369100*cos(7.7520047*x)-.36109859*sin(7.7520047*x)-.23739778*cosh(7.7520047*x)+.19615343*sinh(7.7520047*x))+Heaviside(x-0.418e-1)*(.95680995*cos(9.0218219*x)-.80884870*sin(9.0218219*x)-1.0381918*cosh(9.0218219*x)+1.1704059*sinh(9.0218219*x)):
convert(y(x), piecewise);
y(0.418e-1);
y(0.1e-1);

   

 

This bug occurs when using the palette in 2d math input. Instead, enter a vector or a matrix using angle brackets directly from the keyboard. It's much faster:

 

 

First 97 98 99 100 101 102 103 Last Page 99 of 292