Kitonum

21435 Reputation

26 Badges

17 years, 28 days

MaplePrimes Activity


These are replies submitted by Kitonum

@Spinosaurus  I do not see any problems. You yourself put tickmarks on  y-axis  which you need for a corresponding plot:

P:=plot([sin(x)/4, cos(x)+2.4, 1.2], x=0..2*Pi, -1.2..3.6, color=[red,blue,black], tickmarks = [piticks, [seq(0.25*i = i*10^(`-5`), i = -1 .. 1), seq(0.5*i+2.4 = 0.5*i, i = -2 .. 2)]], axes=box):
T:=plots:-textplot([[4.2,0.2,y=sin(x)/10^`5`], [4,2.5,y=cos(x)]], font=[times,roman,14]):
plots:-display(P, T, scaling=constrained);

                       

 

 

@asa12   Add the option  linestyle = solid  to the code.

@asa12  I repeat again:  you must first click by the mouse on the plot, and press "play " (a triangle symbol) on the animation panel.

@asa12  In my code  sols  is  a list not a vector. So try first convert your  sols[11]  into list:

convert(sols[11], list);

@asa12   My code works in Maple 12. You should just click by the mouse on the plot, and press "play " on the animation panel.
n is the number of vertices in the broken line (nops(sols)= 9), and 5 is the number of frames to display each segment. If the number of frames to increase, it will be more smooth animation.

@acer  Yes you are right,  assuming exp(2)-1>0  can be omitted. I wrote it by an analogy with sqrt(x^2) assuming x>0;

@Carl Love  You changed your style - instead of a single line of a code you write three lines.

Matrix(2,3, (i,j)->`if`(i=1,`Matrix `||j, LinearAlgebra[RandomMatrix](2)));

@RafaeldeGomes

Example:

L1:=seq(LinearAlgebra[RandomMatrix](2), i=1..5);
L2:=seq(LinearAlgebra[RandomMatrix](2), i=1..5);
L3:=seq(LinearAlgebra[RandomMatrix](2), i=1..5);
for k from 1 to 5 do
L1[k], L2[k], L3[k]
od;


 

 

@MDD  If you need to repeat a similar plotting several times, a special procedure is required for this. The planes forming facets of your polyhedral cone should be the parameters of this procedure.

I also got this message after about 15 - 20 minutes  as I posted the answer to Brian's question. Then I accidentally discovered that Brian's question mysteriously turned into a post. I would like to get an explanation of who did so.

Unfortunately I do not remember where I wrote about this formula, so I wrote again this simple procedure. The procedure returns the oriented area of a non-self-intersecting polygon:

Shoelace:=proc(L::list)
local n;
n:=nops(L); 
(1/2)*add(L[i, 1]*L[i+1, 2]-L[i, 2]*L[i+1, 1], i = 1 .. n-1);
end proc: 

 

Example of use:

L:=[[3, -1], [-2, 2], [5, 6], [2, 3/2], [3, -1]]:
Shoelace(L);
plots[display](plottools[polygon](L, color=yellow));

                 

 

In this post  Shoelace  procedure was generalized  (Area  procedure) for a region in the plane bounded by a non-self-intersecting piecewise smooth curve.

@MDD   A, B, C  are the points of intersections of the plane  x+y+z = 1  with the original planes (I put these points on the plot). The faces of the obtained solid angle is easy to paint in any color using  color option in plots:-polygonplot3d  command. Edges also can be painted, if you use  plottools[line]  command:

restart; 
S := {-x+2*y, -x-y+3*z, 3*x-2*y-z, x+y+z = 1}: 
A, B, C:=map2(eval, [x,y,z], solve~([seq(S minus {S[i]}, i = 1 .. 3)]))[ ]; 
OO := [0, 0, 0]:
Points:=plots:-textplot3d([[A[],"A",align=below],[B[],"B", align=above],[C[],"C",align=below]], font=[times,roman,16]):  
plots:-display(Points,plots:-polygonplot3d([[OO, A, B], [OO, A, C], [OO, B, C]], color=[red,green,blue], axes = normal, labels = [x, y, z], labelfont = [times, roman, 16], orientation=[70,65,0]));

                       

 

Solid_angle1.mw


 

@umar khan   If  L  is a list then  L[n]  is  n-th element of this list.

@Vee  Everything is fine:

evalc((-1)^(1/3));
expand(%^3);

                     1/2+(1/2*I)*sqrt(3)

                                -1

@Vliegkikker  Maple easily solves linear systems, and if it does not return any answer, it indicates that the system is inconsistent.

First 70 71 72 73 74 75 76 Last Page 72 of 132