Suryakanth

Mr. Surya S

20 Reputation

5 Badges

1 years, 330 days

MaplePrimes Activity


These are replies submitted by Suryakanth

@KIRAN SAJJAN   @dharr

How to get the plots for this govering equation. as suggested by kiran sajjan

Mn := .5; We := 1.5; Omega := 1.5; Grt := 1.5; Grc := 1.5; Grf := 1.5; Pr := 6; Nb := 1.5; Nt := 2; Ntc := .5; Nct := .8; beta := 1.5; d := .8; x := 0; varphi := (1/2)*Pi; b := .6; a := .5; t := 1; lambda := 1; Rd := 3; alpha := 0.5e-1; f := 3; yL := -.8; yR := 1.5; OdeSys := {diff(Gamma(y), y$2)+Nt*(diff(theta(y), y$2))/Nb = 0, diff(phi(y), y$2)+Nct*(diff(theta(y), y$2)) = 0, (Pr*Rd+1)*(diff(theta(y), y$2))+Nb*Pr*(diff(theta(y), y))*(diff(Gamma(y), y))+Nt*Pr*(diff(theta(y), y))^2+Ntc*Pr*(diff(phi(y), y$2))+beta = 0, diff(psi(y), y$4)-Mn^2*(diff(psi(y), y$2))/(Omega^2+1)+Grt*theta(y)+Grc*phi(y)-Grf*Gamma(y)-2*We^2*(Mn^2*(diff(psi(y), y$2))/(Omega^2+1)-Grt*theta(y)-Grc*phi(y)+Grf*Gamma(y))^3 = 0}; Cond := {(D(psi))(1+a*cos(2*Pi*(x-t)/lambda))-alpha*((D@@2)(psi))(1+a*cos(2*Pi*(x-t)/lambda)) = -1, (D(psi))(-d-b*cos(2*Pi*(x-t)/lambda+varphi))+alpha*((D@@2)(psi))(-d-b*cos(2*Pi*(x-t)/lambda+varphi)) = -1, Gamma(1+a*cos(2*Pi*(x-t)/lambda)) = 0, Gamma(-d-b*cos(2*Pi*(x-t)/lambda+varphi)) = 1, phi(1+a*cos(2*Pi*(x-t)/lambda)) = 0, phi(-d-b*cos(2*Pi*(x-t)/lambda+varphi)) = 1, psi(1+a*cos(2*Pi*(x-t)/lambda)) = (1/2)*f, psi(-d-b*cos(2*Pi*(x-t)/lambda+varphi)) = -(1/2)*f, theta(1+a*cos(2*Pi*(x-t)/lambda)) = 0, theta(-d-b*cos(2*Pi*(x-t)/lambda+varphi)) = 1};
sol := dsolve({Cond[], OdeSys[]}, numeric, output = listprocedure, range = yL .. yR);
i  want same plots given in this manner

expected results

@KIRAN SAJJAN 

You are given correct post .

If I am implement to my plots means I am getting circular path only. 

I have one dought psi versus y  2d plots getting correct wave / ossilation form but why I m getting circular path for contour of same psi function

What is the mistake in plot command.getting circular pattern. Where I need to change in this worksheet to get same pattern in stream lines / contour plot

pulatile_flow_error.mw

@acer 

Thank you for your reply sir, 

Dear sir here i have given a work  will all equations they have ploted streamlines like a flow pattern of fluid.

i also need to find similar plots which is given in plots 9, 10 or 11 given in pdf peristatic_flow_paper_demo.pdf

but i have similar equations but in my equations i am not able to get same streamline flow i am getting as circular path. 

it should be osulatary motion.

why it is circular motion in the above plots . in the base work wich is given as oscilatory. if iam using sine or cos function also it is giving the same circular motion only. 

if we mention plots in the circualr motion there will be wrong representation of stream function/ stram lines.

@dharr 

Dear sir howto draw stream lines for the above equation 

Using the stream function u=∂ψ/∂y,v=−∂ψ/∂x.

with(plots):

psi_fun := (x,y) -> eval(psi(y), Ans[1]) + 0.1*sin(2*Pi*x/200)*y;

contourplot(psi_fun(x,y),

            x=0..200, y=0..400,

            contours=20,

            filled=true,

            coloring=[blue, cyan, lightblue],

            axes=boxed,

            label

s=["x","y"]);

Similar plot I want

 

@sand15 paper2_new_efficiency_plots_2025.mw

for these plots

 i need the animation of that plots with the variation of  X=0..1 in first plot and tau=0..2 in second plot.

please give me solution for it

@Carl Love

Thank you

But what are the changes need to do in this plot sir.

I m not that much familier in this. 

by using this post Pde i have given my equation please check the mistakes and reply

I m waiting for the reply.

Daily i m checking the same post. Please do help for this.

Thank you

 

please check my question and rectify my errors.

i have posted a new question that is automatically deleted

restart

with(PDEtools); with(plots)

inf := 10

NULL

deltaB := .5; Lam := .5; Pr := .71; Nm := .4; Nr := .4; Nt := .3; Nb := .4; Ec := .3; Sc := .6; Kr := .3; betat := .8; Rd := 2; deltaA := .8

alphac := .1; `αt` := .1; Lt := .1; Br := .1

``

``

``

``

OdeSys := {f(xi, eta)*(diff(Phi(xi, eta), eta))+(diff(Phi(xi, eta), eta, eta)+Nt*(diff(Theta(xi, eta), eta, eta))/Nb)/Sc-Kr*Phi(xi, eta)-xi*((diff(f(xi, eta), eta))*(diff(Phi(xi, eta), xi))-(diff(Phi(xi, eta), eta))*(diff(f(xi, eta), xi))), (diff(f(xi, eta), eta, eta))*f(xi, eta)-xi*((diff(f(xi, eta), eta))*(diff(diff(f(xi, eta), eta), xi))-(diff(f(xi, eta), eta, eta))*(diff(f(xi, eta), xi)))-(diff(f(xi, eta), eta))^2+sin(xi)*cos(xi)/xi+(diff(f(xi, eta), eta, eta, eta))*(1+deltaA)-(deltaA*deltaB*xi*xi)*(diff(f(xi, eta), eta, eta))^2*(diff(f(xi, eta), eta, eta, eta))-Ma*(diff(f(xi, eta), eta)-sin(xi)/xi)+Lam*sin(xi)*(Theta(xi, eta)+Nm*Theta(xi, eta)*Theta(xi, eta)-Nr*Phi(xi, eta))/xi, (1+4*Rd*(1/3))*(diff(Theta(xi, eta), eta, eta))/Pr+Nb*(diff(Theta(xi, eta), eta))*(diff(Phi(xi, eta), eta))+f(xi, eta)*(diff(Theta(xi, eta), eta))+(Ma*Ec*xi*xi)*(diff(f(xi, eta), eta)-sin(xi)/xi)^2+Nt*(diff(Theta(xi, eta), eta))^2+((1+deltaA)*Ec*xi*xi)*(diff(f(xi, eta), eta, eta))^2-(1/3)*Ec*deltaA*deltaB*xi^4*(diff(f(xi, eta), eta, eta))^4-xi*((diff(f(xi, eta), eta))*(diff(Theta(xi, eta), xi))-(diff(Theta(xi, eta), eta))*(diff(f(xi, eta), xi)))}; Cond := {Phi(0, eta) = 0, Phi(xi, 0) = 1, Phi(xi, inf) = 0, Theta(0, eta) = 0, Theta(xi, inf) = 0, f(0, eta) = 0, f(xi, 0) = 0, (D[2](Theta))(xi, 0) = (Theta(xi, 0)-1)*betat, (D[2](f))(xi, 0) = 0, (D[2](f))(xi, inf) = sin(xi)/xi}

colour := [red, green, blue, gold]

NULL

MaVals := [1, 2, 3, 5]

NULL

for j to numelems(MaVals) do Ans[j] := pdsolve((eval([OdeSys, Cond], Ma = MaVals[j]))[], numeric, timestep = 0.1e-1); Ng[j] := eval(alphat*(1+4*Rd*(1/3))*(eval(diff(Theta(xi, eta), eta), Ans[j]))^2+Lt*alphac*(eval(diff(Phi(xi, eta), eta), Ans[j]))^2/alphat+Lt*(eval(diff(Phi(xi, eta), eta), Ans[j]))*(eval(diff(Theta(xi, eta), eta), Ans[j]))+Ma*Br*(xi*(eval(diff(f(xi, eta), eta), Ans[j]))-sin(xi))^2+(Br*(1+deltaA)*xi*xi)*(eval(diff(f(xi, eta), eta, eta), Ans[j]))^2-(1/3)*Br*deltaA*deltaB*xi^4*(eval(diff(f(xi, eta), eta, eta), Ans[j]))^4, Ma = MaVals[j]); Bj[j] := (eval(alphat*(1+4*Rd*(1/3))*(eval(diff(Theta(xi, eta), eta), Ans[j]))^2+Lt*alphac*(eval(diff(Phi(xi, eta), eta), Ans[j]))^2/alphat+Lt*(eval(diff(Phi(xi, eta), eta), Ans[j]))*(eval(diff(Theta(xi, eta), eta), Ans[j])), Ma = MaVals[j]))/(eval(alphat*(1+4*Rd*(1/3))*(eval(diff(Theta(xi, eta), eta), Ans[j]))^2+Lt*alphac*(eval(diff(Phi(xi, eta), eta), Ans[j]))^2/alphat+Lt*(eval(diff(Phi(xi, eta), eta), Ans[j]))*(eval(diff(Theta(xi, eta), eta), Ans[j]))+Ma*Br*(xi*(eval(diff(f(xi, eta), eta), Ans[j]))-sin(xi))^2+(Br*(1+deltaA)*xi*xi)*(eval(diff(f(xi, eta), eta, eta), Ans[j]))^2-(1/3)*Br*deltaA*deltaB*xi^4*(eval(diff(f(xi, eta), eta, eta), Ans[j]))^4, Ma = MaVals[j])) end do

Error, invalid input: eval received _m1956857817248, which is not valid for its 2nd argument, eqns

 

NULL

with(plots); cols := [red, blue, black, green]; plotZ := display*([seq*(pdeplot*(Ans[k], [eta, Ng[k](xi, eta)], eta = 0 .. 5, xi = 1, color = cols[k]), k = 1 .. numelems(MaVals))], 'axes' = 'boxed', labels = [eta, 'Ng'], size = [600, 600]); plotP := display*([seq*(pdeplot*(Ans[k], [eta, Bej[k](eta, xi)], eta = 0 .. 5, xi = 1, color = cols[k]), k = 1 .. numelems(MaVals))], 'axes' = 'boxed', labels = [eta, 'Bj'], size = [600, 600])

 

Download circular_cylider_entropy_plot.mw

Similar problem asked few years back there answer is not there question is incomplete check here Related pot.

Modify my work sheet for solution

 

Page 1 of 1