abdulganiy

140 Reputation

6 Badges

8 years, 138 days

MaplePrimes Activity


These are questions asked by abdulganiy

Hello everyone,

While trying to open a maple document, a box pops up with the text "How do you want to open this file?" with the options "Maple Text, Plain Text, Maple Inputs" what could be responsible for this? and which of the options is better for mathematics and coding?

 

Thank you so much

restart;
Digits:=30:

f:=proc(n)
	x[n]-y[n];
	
end proc:


e1:=y[n] = (15592/1575)*h*f(n+5)+(35618816/99225)*h*f(n+9/2)-(4391496/15925)*h*f(n+13/3)-(2035368/13475)*h*f(n+14/3)-(212552/121275)*h*f(n+1)+(10016/11025)*h*f(n+2)-(31672/4725)*h*f(n+3)+(19454/315)*h*f(n+4)-(351518/1289925)*h*f(n)+y[n+4]:
e2:=y[n+1] = -(34107/22400)*h*f(n+5)-(212224/3675)*h*f(n+9/2)+(92569149/2038400)*h*f(n+13/3)+(82333989/3449600)*h*f(n+14/3)-(568893/1724800)*h*f(n+1)-(459807/313600)*h*f(n+2)+(1189/22400)*h*f(n+3)-(50499/4480)*h*f(n+4)+(32951/6115200)*h*f(n)+y[n+4]:
e3:=y[n+2] = (69/175)*h*f(n+5)+(1466368/99225)*h*f(n+9/2)-(13851/1225)*h*f(n+13/3)-(60507/9800)*h*f(n+14/3)+(43/3675)*h*f(n+1)-(3509/9800)*h*f(n+2)-(6701/4725)*h*f(n+3)+(871/420)*h*f(n+4)-(247/396900)*h*f(n)+y[n+4]:
e4:=y[n+3] = -(31411/201600)*h*f(n+5)-(745216/99225)*h*f(n+9/2)+(13557213/2038400)*h*f(n+13/3)+(9737253/3449600)*h*f(n+14/3)-(20869/15523200)*h*f(n+1)+(36329/2822400)*h*f(n+2)-(202169/604800)*h*f(n+3)-(100187/40320)*h*f(n+4)+(14669/165110400)*h*f(n)+y[n+4]:
e5:=y[n+13/3] = -(3364243/1322697600)*h*f(n+5)-(134364928/651015225)*h*f(n+9/2)+(19955023/55036800)*h*f(n+13/3)+(5577703/93139200)*h*f(n+14/3)-(910757/101847715200)*h*f(n+1)+(1336457/18517766400)*h*f(n+2)-(2512217/3968092800)*h*f(n+3)+(31844549/264539520)*h*f(n+4)+(690797/1083289334400)*h*f(n)+y[n+4]:
e6:=y[n+14/3] = -(29107/10333575)*h*f(n+5)+(7757824/651015225)*h*f(n+9/2)+(180667/429975)*h*f(n+13/3)+(342733/2910600)*h*f(n+14/3)-(7253/795685275)*h*f(n+1)+(42467/578680200)*h*f(n+2)-(19853/31000725)*h*f(n+3)+(993749/8266860)*h*f(n+4)+(22037/33852791700)*h*f(n)+y[n+4]:
e7:=y[n+9/2] = -(115447/51609600)*h*f(n+5)-(21389/198450)*h*f(n+9/2)+(231041241/521830400)*h*f(n+13/3)+(43797591/883097600)*h*f(n+14/3)-(32833/3973939200)*h*f(n+1)+(48323/722534400)*h*f(n+2)-(91493/154828800)*h*f(n+3)+(1220071/10321920)*h*f(n+4)+(24863/42268262400)*h*f(n)+y[n+4]:
e8:=y[n+5] = (1989/22400)*h*f(n+5)-(61184/99225)*h*f(n+9/2)+(1496637/2038400)*h*f(n+13/3)+(2458917/3449600)*h*f(n+14/3)+(73/5174400)*h*f(n+1)-(31/313600)*h*f(n+2)+(359/604800)*h*f(n+3)+(1079/13440)*h*f(n+4)-(179/165110400)*h*f(n)+y[n+4]:



h:=0.01:
N:=solve(h*p = 8/8, p):
#N := 10:
#n:=0:
#exy:= [seq](eval(i+exp(-i)-1), i=h..N,h):
c:=1:
inx:=0:
iny:=0:

mx := proc(t,n):
   t + 0.01*n:
end proc:

exy := (x - 1.0 + exp(-x)):

vars := y[n+1],y[n+2],y[n+3],y[n+4],y[n+13/3],y[n+14/3],y[n+9/2],y[n+5]:

printf("%6s%20s%20s%20s\n", "h","numy1","Exact", "Error");
#for k from 1 to N/8 do
for c from 1 to N do

	par1:=x[n]=map(mx,(inx,0)),x[n+1]=map(mx,(inx,1)),
		x[n+2]=map(mx,(inx,2)),x[n+3]=map(mx,(inx,3)),
		x[n+4]=map(mx,(inx,4)),x[n+5]=map(mx,(inx,5)),
		x[n+13/3]=map(mx,(inx,13/3)),x[n+14/3]=map(mx,(inx,14/3)),
		x[n+9/2]=map(mx,(inx,9/2)):
	par2:=y[n]=iny:
	res:=eval(<vars>, fsolve(eval({e||(1..8)},[par1,par2]), {vars}));
	
	printf("%7.3f%22.10f%20.10f%17.3g\n", 
		h*c,res[8],(exy,[x=c*h]),abs(res[8]-eval(exy,[x=c*h]))):
		#c:=c+1:
	
	iny:=res[8]:
	inx:=map(mx,(inx,5)):
end do:

Dear all,

Please Kindly help to correct or modify the code above

Thank you and best regards
 

 

 

The rational expression at the beginning of the code is approximant. p1-p5 are conditions imposed on t, and are to be solved simultaneously to obtain a[0]-a[4] which are then substituted into t to obtain Cf. S1-S4 are to be obtained from Cf and its derivative.

However, I observed that Cf is not providing the desired results. What have I done wrong? Please Can someone be of help?

Thank you and kind regards

 

restart:
t:=sum(a[j]*x^j,j=0..2)/sum(a[j]*x^j,j=3..4):
F:=diff(t,x,x):
p1:=simplify(eval(t,x=q))=y[n]:
p2:=simplify(eval(t,x=q+h))=y[n+1]:
p3:=simplify(eval(F,x=q))=f[n]:
p4:=simplify(eval(F,x=q+h))=f[n+1]:
p5:=simplify(eval(F,x=q+2*h))=f[n+2]:
vars:= seq(a[i],i=0..4):
Cc:=eval(<vars>, solve({p||(1..5)}, {vars}));
for i from 1 to 5 do
	a[i-1]:=Cc[i]:
end do:
Cf:=t;
M:=diff(Cf,x):
s4:=y[n+2]=collect(simplify(eval(Cf,x=q+2*h)),[y[n],y[n+1],f[n],f[n+1],f[n+2]], recursive);
s3:=h*delta[n]=collect(h*simplify(eval(M,x=q)),{y[n],y[n+1],f[n],f[n+1],f[n+2]},factor);
s2:=h*delta[n+1]=collect(h*simplify(eval(M,x=q+h)),{y[n],y[n+1],f[n],f[n+1],f[n+2]},factor):
s1:=h*delta[n+1]=collect(h*simplify(eval(M,x=q+2*h)),{y[n],y[n+1],f[n],f[n+1],f[n+2]},factor):

 

Good day, all. I hope we are staying safe.

Please I need help with the regard to the following codes.

The major issue is with rho:=x[n]/h. The rho needs to change values as x[n] changes in the computation. This I think I have gotten wrong. Your professional modifications or/and corrections to the code would be appreciated.

Thank you and kind regards.

restart;
Digits:=20:
#assume(alpha>0,alpha < 1):
f:=proc(n)
	-y[n]-x[n]+(x[n])^2+(2*(x[n])^(2-alpha))/GAMMA(3-alpha)+((x[n])^(1-alpha))/GAMMA(2-alpha):
end proc:

e2:=y[n+2] = y[n]+(1/2)*((alpha^2-alpha)*rho^2+(2*alpha^2-2)*rho+(4/3)*alpha^2-(2/3)*alpha)*(rho*h)^alpha*GAMMA(2-alpha)*f(n)/rho-alpha*GAMMA(2-alpha)*((-1+alpha)*rho^2+(2*alpha-2)*rho+(4/3)*alpha-8/3)*(h*(rho+1))^alpha*f(n+1)/(rho+1)+(1/2)*((alpha^2-alpha)*rho^2+2*(-1+alpha)^2*rho+(4/3)*alpha^2-(14/3)*alpha+4)*(h*(rho+2))^alpha*f(n+2)*GAMMA(2-alpha)/(rho+2):
e1:=y[n+1] = y[n]+(1/4)*((alpha^2-alpha)*rho^2+(alpha^2+3*alpha-4)*rho+(1/3)*alpha^2+(4/3)*alpha)*GAMMA(2-alpha)*f(n)/((rho*h)^(-alpha)*rho)-(1/2)*GAMMA(2-alpha)*((alpha^2-alpha)*rho^2+(alpha^2+alpha-2)*rho+(1/3)*alpha^2+(1/3)*alpha-2)*f(n+1)/((h*(rho+1))^(-alpha)*(rho+1))+(1/4)*((-1+alpha)*rho^2+(-1+alpha)*rho+(1/3)*alpha-2/3)*alpha*GAMMA(2-alpha)*f(n+2)/((h*(rho+2))^(-alpha)*(rho+2)):


alpha:=0.25:
inx:=0:
iny:=0:
#x[0]:=0:
h:=1/20:
N:=solve(h*p = 1, p):
n:=0:
c:=1:
rho:=x[n]/h: 
err := Vector(round(N)):
exy_lst := Vector(round(N)):

for j from 0 to 2 do
	t[j]:=inx+j*h:
end do:
vars:=y[n+1],y[n+2]:

step := [seq](eval(x, x=c*h), c=1..N):

printf("%4s%15s%15s%16s\n", 
	"h","Num.y","Ex.y","Error y");
st := time():
for k from 1 to N/2 do

	par1:=x[n]=t[0],x[n+1]=t[1],x[n+2]=t[2]:
	par2:=y[n]=iny:
	res:=eval(<vars>, fsolve(eval({e||(1..2)},[par1,par2]), {vars}));

	for i from 1 to 2 do
		exy:=eval(-c*h+(c*h)^2):
		printf("%5.3f%17.9f%15.9f%15.5g\n", 
		h*c,res[i],exy,abs(res[i]-exy)):
		
		err[c] := abs(evalf(res[i]-exy)):
		exy_lst[c] := exy:
		numerical_y1[c] := res[i]:
		c:=c+1:
		rho:=rho+1:
	end do:
	iny:=res[2]:
	inx:=t[2]:
	for j from 0 to 2 do
		t[j]:=inx + j*h:
	end do:
end do:
v:=time() - st;
printf("Maximum error is %.13g\n", max(err));

numerical_array_y1 := [seq(numerical_y1[i], i = 1 .. N)]:

time_t := [seq](step[i], i = 1 .. N):

with(plots):
numerical_plot_y1 := plot(time_t, numerical_array_y1, style = [point], symbol = [asterisk],
				color = [blue,blue],symbolsize = 15, title="y numerical",legend = ["Numerical"]);
exact_plot_y1 := plot(time_t, exy_lst, style = [line], symbol = [box], 
				color = [red,red], symbolsize = 10, title="y exact",legend = ["Exact"]);

display({numerical_plot_y1, exact_plot_y1}, title = "Exact and Numerical Solution of Example 1 ");

 

I am trying to run this code but this error message is coming up "Error, (in fprintf) number expected for floating point format
". What have I done wrong and how do I correct it.

Thank you and best regards.

 

restart;
Digits:=30:

f:=proc(n)
	-((sin(x[n]))/(2-sin(x[n])))*(2+sin(x[n]-Pi)):
end proc:

e1:=y[n+1]=h*delta[n]-(1/2)*h^2*(-u^2*sin((1/2)*u)+2*cos((1/2)*u)*u-2*cos(u)*u-4*sin((1/2)*u)+2*sin(u))*f(n)/(u^2*(2*sin((1/2)*u)-sin(u)))+(1/2)*h^2*(u^2*sin((1/2)*u)+2*cos((1/2)*u)*u-4*sin((1/2)*u)+2*sin(u)-2*u)*f(n+1)/(u^2*(2*sin((1/2)*u)-sin(u)))-(1/2)*h^2*(u*sin(u)+2*cos(u)-2)*f(n+1/2)/(u*(2*sin((1/2)*u)-sin(u)))+y[n]:
e2:=h*delta[n+1]=h*delta[n]+h^2*(u*sin((1/2)*u)+cos(u)-1)*f(n)/(u*(2*sin((1/2)*u)-sin(u)))+h^2*(u*sin((1/2)*u)+cos(u)-1)*f(n+1)/(u*(2*sin((1/2)*u)-sin(u)))-h^2*(u*sin(u)+2*cos(u)-2)*f(n+1/2)/(u*(2*sin((1/2)*u)-sin(u))):
e3:=y[n+1/2]=(1/2)*h*delta[n]-(1/8)*h^2*(-u^2*sin((1/2)*u)+4*cos((1/2)*u)*u-4*cos(u)*u-16*sin((1/2)*u)+8*sin(u))*f(n)/(u^2*(2*sin((1/2)*u)-sin(u)))+(1/8)*h^2*(u*sin((1/2)*u)+4*cos((1/2)*u)-4)*f(n+1)/(u*(2*sin((1/2)*u)-sin(u)))-(1/8)*h^2*(u^2*sin(u)+4*cos(u)*u+16*sin((1/2)*u)-8*sin(u)-4*u)*f(n+1/2)/(u^2*(2*sin((1/2)*u)-sin(u)))+y[n]:
e4:=h*delta[n+1/2]=h*delta[n]-(1/2)*h^2*(-u*sin((1/2)*u)+4*cos((1/2)*u)-2*cos(u)-2)*f(n)/(u*(2*sin((1/2)*u)-sin(u)))+(1/2)*h^2*(u*sin((1/2)*u)+4*cos((1/2)*u)-4)*f(n+1)/(u*(2*sin((1/2)*u)-sin(u)))-(1/2)*h^2*(u*sin(u)+2*cos(u)-2)*f(n+1/2)/(u*(2*sin((1/2)*u)-sin(u))):


inx:=0:
ind:=1:
iny:=2:
h:=Pi/4:
n:=0:
omega:=1:
u:=omega*h:
N:=solve(h*p = 8*Pi, p):

c:=1:
for j from 0 to 1 by 1/2 do
	t[j]:=inx+j*h:
end do:

vars:=y[n+1/2],y[n+1],delta[n+1/2],delta[n+1]:

step := [seq](eval(x, x=c*h), c=1..N):
printf("%6s%15s%15s%16s%15s%15s%15s\n", 
	"h","Num.y","Num.z","Ex.y","Ex.z","Error y","Error z");
#eval(<vars>, solve({e||(1..4)},{vars}));


st := time():
for k from 1 to N do

	par1:=x[0]=t[0],x[1/2]=t[1/2],x[1]=t[1]:
	par2:=y[n]=iny,delta[n]=ind:
	res:=eval(<vars>, fsolve(eval({e||(1..4)},[par1,par2]), {vars}));

	for i from 1 to 2 do
		exy:=eval(2+sin(c*h/2)):
		exz:=eval(-sin(c*h/2)+10*epsilon*cos(10*c*h)):
		printf("%6.5f%17.9f%15.9f%15.9f%15.9f %13.5g%15.5g\n", 
		h*c,res[i],res[i+2],exy,exz,abs(res[i]-exy),
		abs(res[i+2]-exz)):
		
		c:=c+1:

	end do:
	iny:=res[2]:
	ind:=res[4]:
	inx:=t[1]:
	for j from 0 to 1 by 1/2 do
		t[j]:=inx + j*h:
	end do:
end do:

 

1 2 3 4 5 6 7 Page 2 of 7