acer

32343 Reputation

29 Badges

19 years, 327 days
Ontario, Canada

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are replies submitted by acer

See the help-page ?plot,colornames which shows the valid names.

In the table in that page, "Orange" and "orange" have different values.

That help-page says,

- The new names in the left-most column are the commonly used HTML color
  names. The lower case names in the middle column are the colors originally
  used by Maple, and are retained for backward compatibility. In some cases
  (Blue, White, Yellow) the RGB value is the same, but in others (Maroon,
  Gold) it is quite different.

The situation for Orange is like that for Maroon, in this respect.

acer

See the help-page ?plot,colornames which shows the valid names.

In the table in that page, "Orange" and "orange" have different values.

That help-page says,

- The new names in the left-most column are the commonly used HTML color
  names. The lower case names in the middle column are the colors originally
  used by Maple, and are retained for backward compatibility. In some cases
  (Blue, White, Yellow) the RGB value is the same, but in others (Maroon,
  Gold) it is quite different.

The situation for Orange is like that for Maroon, in this respect.

acer

Instead of what you have above, try that additional option as,

parameterranges = [alpha = 1 .. 100, rho = 1 .. 100]
See the help-page ?list for an explanation of the list constructor's syntax.

acer

Instead of what you have above, try that additional option as,

parameterranges = [alpha = 1 .. 100, rho = 1 .. 100]
See the help-page ?list for an explanation of the list constructor's syntax.

acer

What error did you get? Perhaps more importantly, what exactly did you enter?

The following works even back to Maple 6,

M := Matrix([[-2,1,3],[-5,7*a,3],[5,-2,a]]):
values := [solve(LinearAlgebra:-Determinant(M))];
seq(LinearAlgebra:-Rank(eval(M,a=values[i])),i=1..nops(values));
In any event, you should be able to also do this by hand: Form a Matrix of those vectors, take its determinant, set that equal to zero, and solve the quadratic.

acer

What error did you get? Perhaps more importantly, what exactly did you enter?

The following works even back to Maple 6,

M := Matrix([[-2,1,3],[-5,7*a,3],[5,-2,a]]):
values := [solve(LinearAlgebra:-Determinant(M))];
seq(LinearAlgebra:-Rank(eval(M,a=values[i])),i=1..nops(values));
In any event, you should be able to also do this by hand: Form a Matrix of those vectors, take its determinant, set that equal to zero, and solve the quadratic.

acer

If your data is in a Vector (capital V, not vector) and if it is of size more than ten, then you would have to adjust interface(rtablesize) in order to get have all its entries displayed. See here for more detail.

I suggest that you go with the more modern Statistics and Vector, rather than the older deprecated stats package.

(This rtablesize issue comes up quite often. It ought to be a FAQ. And there should be a more convenient GUI setting for it.)

acer

If your data is in a Vector (capital V, not vector) and if it is of size more than ten, then you would have to adjust interface(rtablesize) in order to get have all its entries displayed. See here for more detail.

I suggest that you go with the more modern Statistics and Vector, rather than the older deprecated stats package.

(This rtablesize issue comes up quite often. It ought to be a FAQ. And there should be a more convenient GUI setting for it.)

acer

You might have a look at this thread on the Eee Pc. Installation tricks to solid state drives (or SD cards) might also work various other netbooks.

You could also look at PocketCAS.

If wifi or other wireless networking had improved much faster then we might have seen thin client solutions by now for portable CAS. But it looks more as if the advent  of hardware improvements to allow the big CAS systems to run on the smaller portables is going to happen first (and, maybe, instead of thin client solutions).

Personally, I wouldn't bother with python as the available CAS libraries are not as full-fledged.

It'll get interesting when PDAs get as much power as notebooks have now, in terms of speed/memory/storage. Will people prefer netbook size for doing serious math, or will there be a big need for small but useful CAS graphical-user-interfaces. Perhaps the next few years will tell.

acer

I agree that a key part would be to be able to adjust options quickly.

Sometimes I would like to be able to toggle interface options without cluttering up the worksheet in which I'm working. Often I don't need or want to have the interface control code appear in my original worksheet, as I'm just investigating and I intend to delete such toggled effects before I save. I usually open a new worksheet with a shared kernel, to get this overall effect. But it could be much easier and faster with a menu.

I also find that the Standard GUI's menus for this are too awkward. I don't like to have to go through Tools -> Options and then select the Interface tab. (And several useful things from the interface() command are missing in that tab, anyway.) I'd prefer to be able to add a quick launch "interface" button to a configurable menubar. That's modern technology, however.

I'd write customized context-menus, to get these effects via right-clicking in the worksheet. But I haven't figured out how to get context-menu actions to insert no output.

Other interface options that I'd like ready access to in Standard are rtablesize, warnlevel, and the ones which affect plot devices and options. Even labelling and labelwidth can sometimes serve a purpose in Standatd if adjusted alongside prettyprint. And then there is printlevel. And some kernelopts.

acer

I recommend using this site's Software Change Request form to submit descriptions and explicit examples of these typesetting performance problems.

acer

It's not altogether clear whether solve is not affected by assumptions.

> assume(x>1):
> solve( (1-x^2)>=0 ); # NULL

> restart:
> solve( (1-x^2)>=0 );
                               RealRange(-1, 1)

acer

It's not altogether clear whether solve is not affected by assumptions.

> assume(x>1):
> solve( (1-x^2)>=0 ); # NULL

> restart:
> solve( (1-x^2)>=0 );
                               RealRange(-1, 1)

acer

This below worked for me on Maple 11.

plot(sin(x), x = 0 .. 2*Pi, tickmarks = [[seq(i*Pi/2=i*Pi/2,i=1..4)],default]);

It also seems to work if more tick-points are specified than will fit in the specified range.

plot(sin(x), x = 0 .. 2*Pi, tickmarks = [[seq(i*Pi/2=i*Pi/2,i=-40..40)],default]);

The spacing() way did not work properly in my Maple 11 too. The fractions print as floats.

acer

This below worked for me on Maple 11.

plot(sin(x), x = 0 .. 2*Pi, tickmarks = [[seq(i*Pi/2=i*Pi/2,i=1..4)],default]);

It also seems to work if more tick-points are specified than will fit in the specified range.

plot(sin(x), x = 0 .. 2*Pi, tickmarks = [[seq(i*Pi/2=i*Pi/2,i=-40..40)],default]);

The spacing() way did not work properly in my Maple 11 too. The fractions print as floats.

acer

First 502 503 504 505 506 507 508 Last Page 504 of 592