vv

14077 Reputation

20 Badges

10 years, 69 days

MaplePrimes Activity


These are answers submitted by vv

The computation is slow on my (old) computer. It needs several hours.
To  interrupt and then continue later, just save the partial results. 

restart;
read "d:/temp/Jfile.mpl";
max(indices(J,nolist));
smax := 20;  R := 1680;  k := 1/4;  gam := 1/2;    vmax:=R/2;
n:=0;
Digits:=15:
f:=proc(v,s) 
  evalf(Re(  sinh(s)*coth(1/2*s)^(2*I/k)/(gam-I*k*cosh(s))^5*exp(-(k^2*sinh(s)^2/(gam-I*
  k*cosh(s))+I*k*(1-cosh(s)))*v)*Hypergeom([I/k],[1],I*k*v)*v^n  ))
end:
V0:=0;  dV:=20;  # <-----
for V from V0 to vmax-dV by dV do
  J[V]:=evalf(1/R * Int(f, [V..V+dV, 0..smax], method=_CubaCuhre, epsilon=1e-5));
od;
save J, "d:/temp/Jfile.mpl";
add(entries(J,nolist));
max(indices(J,nolist));

Similar for the imaginary part if needed.

 

restart;

`simplify/JacobiP`:=proc(ex::algebraic)
  evalindets(ex, specfunc({int,Int}),
    proc(J)
      local J11,J12, n,a,b,x, m;
      if not type(op(1,J), `*`) then return J fi;
      J11:=select(type, [op(op(1,J))], specfunc(JacobiP)^2 );
      J12:=select(type, [op(op(1,J))], specfunc(JacobiP));
      if not(J11<>[] xor J12<>[]) or nops(J11)>1 then return J fi;
      if J11<>[] then J12:=[op([1,1],J11)$2] fi;
      if nops(J12)<>2 or op(J12[1])[2..] <> op(J12[2])[2..] then return J fi;
      n,a,b,x := op(J12[1]); m:=op(1,J12[2]);
      if  not mul(J12)*(1-x)^a*(1+x)^b = op(1,J) or not (op(-1,J) = (x=-1..1))   then return  J fi;
      piecewise(m<>n, 0, 2^(a+b+1)*GAMMA(n+a+1)*GAMMA(n+b+1)/((2*n+a+b+1)*GAMMA(n+a+b+1)*n!))
    end proc
  )
end proc:

 

# Examples

J:=Int(JacobiP(n, a, b, x)*JacobiP(m, a, b, x)*(1 - x)^a*(1 + x)^b, x=-1..1):

simplify(J, JacobiP);

piecewise(m <> n, 0, 2^(a+b+1)*GAMMA(n+a+1)*GAMMA(n+b+1)/((2*n+a+b+1)*GAMMA(n+a+b+1)*factorial(n)))

(1)

J:=Int(JacobiP(n, a, b, x)*JacobiP(m, a, b, x)*(1 - x)^a*(1 + x)^b, x=-1..100):

simplify(J, JacobiP);

Int(JacobiP(n, a, b, x)*JacobiP(m, a, b, x)*(1-x)^a*(1+x)^b, x = -1 .. 100)

(2)

J:=Int(JacobiP(n, a, b, x)^2*(1 - x)^a*(1 + x)^b, x=-1..1);

Int(JacobiP(n, a, b, x)^2*(1-x)^a*(1+x)^b, x = -1 .. 1)

(3)

simplify(J, JacobiP);

2^(a+b+1)*GAMMA(n+a+1)*GAMMA(n+b+1)/((2*n+a+b+1)*GAMMA(n+a+b+1)*factorial(n))

(4)

J:=int(JacobiP(3, a, b, x)*JacobiP(n, a, b, x)*(1 - x)^a*(1 + x)^b, x=-1..1);

int(JacobiP(3, a, b, x)*JacobiP(n, a, b, x)*(1-x)^a*(1+x)^b, x = -1 .. 1)

(5)

simplify(J, JacobiP);

piecewise(n <> 3, 0, 2^(a+b+1)*GAMMA(4+a)*GAMMA(4+b)/((6*(7+a+b))*GAMMA(4+a+b)))

(6)

simplify((J+1)^2+exp(7*x), JacobiP);

(piecewise(n <> 3, 0, 2^(a+b+1)*GAMMA(4+a)*GAMMA(4+b)/((6*(7+a+b))*GAMMA(4+a+b)))+1)^2+exp(7*x)

(7)

simplify((J+1)^2+exp(7*x), JacobiP) assuming n>3;

1+exp(7*x)

(8)

 


Download SimpJP-vv.mw

                      

 

restart;

d2:=(A,B)-> (A[1]-B[1])^2 + (A[2]-B[2])^2:
area:=(A,B,C) -> LinearAlgebra:-Determinant( <Matrix([A,B,C])|<1,1,1>> )/2:

A:=[0,0];
M:=[0,-7/sqrt(2)];
N:=[0,7/sqrt(2)];
S:=[7/sqrt(2),0];
P:=M+11/7*(S-M);

[0, 0]

 

[0, -(7/2)*2^(1/2)]

 

[0, (7/2)*2^(1/2)]

 

[(7/2)*2^(1/2), 0]

 

[(11/2)*2^(1/2), 2*2^(1/2)]

(1)

T:=P+k*~(N-P);
k:=solve( T[1]^2+T[2]^2-49/2 )[2];

[-(11/2)*k*2^(1/2)+(11/2)*2^(1/2), (3/2)*k*2^(1/2)+2*2^(1/2)]

 

44/65

(2)

B:=[x,y]: solve([d2(B,T)=d2(B,P),d2(B,P)=d2(B,S)],[x,y]):
B:=eval([x,y],%[]);

[(7/2)*2^(1/2), 2*2^(1/2)]

(3)

Q:=2*B-P;

[(3/2)*2^(1/2), 2*2^(1/2)]

(4)

#plot([M,N,P,Q,M]);

Area__MNPQ = area(Q,N,M)+area(Q,P,N);

Area__MNPQ = 33/2

(5)

 

 

F = 0, G = 0 is obviously a solution (gamma = anything).
Depending on your coefficients, this could be the only one.

A:=<-2,3,-5>: B:=<-6,1,-1>: C:=<2,-3,7>:
with(LinearAlgebra): local D:
k:=Norm(B-A,2) / Norm(C-A,2):
D:=(B + k*C)/(1+k);
eqAD:=A + t*(D-A); # parametric equation

The first problem is that you cannot have t=1:

fN(0.5, 1);
Error, (in solnproc) unable to compute solution for t>HFloat(0.2):
Newton iteration is not converging

So, let's take  t := 0.1;

It is not possible to compute the indefinite integral numerically. In your case, what you want is a definite integral.

t := 0.1;
                            t := 0.1

A1:=x*R(z)*R(z)*(fN)(x, t);
                A1 := 0.8692871388 x fN(x, 0.1)

A2:= X -> int(A1, x=0..X):
A2(0); # 0, as you want
                               0.

plot(A2, 0..1);

 

Actually the equation  chi(i) = a (a>=0) may have up to 4 solutions. (The first one for i<=0.)

restart

p := proc (S) options operator, arrow; .32*exp(S)/(1.2+1.901885*exp(S)-S^3) end proc

proc (S) options operator, arrow; .32*exp(S)/(1.2+1.901885*exp(S)-S^3) end proc

(1)

eta := proc (S) options operator, arrow; (D(p))(S)*S/p(S) end proc

proc (S) options operator, arrow; (eval(diff(p(x), x), x = S))*S/p(S) end proc

(2)

f := proc (k) options operator, arrow; A*k^alpha end proc

proc (k) options operator, arrow; A*k^alpha end proc

(3)

w := proc (k) options operator, arrow; f(k)-(D(f))(k)*k end proc

proc (k) options operator, arrow; f(k)-(eval(diff(f(x), x), x = k))*k end proc

(4)

beta := 1

1

(5)

A := 28

28

(6)

alpha := .33

.33

(7)

chi := proc (i) options operator, arrow; i*((1+beta)/beta+eta(i))/(1+eta(i)) end proc

proc (i) options operator, arrow; i*((1+beta)/beta+eta(i))/(1+eta(i)) end proc

(8)

#ss:=simplify(chi(i));

#plot(ss, i=-2..18)

#sort(select(u -> Im(u)=0,[solve(ss,i),solve(1/ss,i)]));

#select(u -> (u>6), [solve(diff(ss,i),i)]);

ii:=[-1.059280978, -0.7553094684, 0, 3.612421353, 6.399747910, 9.270348450, 9.270348450, 50]:

chin:=proc(a)
  local b:= evalf(RootOf(200000*_Z^5 - 200000*_Z^4*a - 200000*_Z^4 + 400000*_Z^3*a - 760754*exp(_Z)*_Z + 380377*exp(_Z)*a - 240000*_Z^2 + 240000*_Z*a - 480000*_Z + 240000*a, _Z, ii[2*n-1] .. ii[2*n]));
`if`(b::numeric,b,undefined)
end:

NULL

Hn:=k -> chin(w(k)):
Vn := k -> ln((w(k) - Hn(k))*(A*alpha)^beta*(p(Hn(k))*Hn(k))^(alpha*beta)):

for n from 1 to 4 do
  plot(Vn, 1 .. 2, title=Plot||n);
od;

Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

 

 

 

 


Download Worksheet_1_vv.mw

If you really want to create the (global) m||i variables even when they exist, just replace

M := [seq(m || i, i = 2 .. l)];

with

M := [seq(evaln(m || i), i = 2 .. l)];


 

It's a quadratic equation. Just use solve.

solve((a*y-x*(a+1))/(x^(2)-b*a^(2)*(y-x)^(2))=A, y);

 

With a little help, Maple can compute the coefficients.

1. Expand to a series around z=0 the function 1/(1 + z)^2.

2. Substitute here z = exp(x-5*t) and expand around t=0.

3. Compute the sum for the coefficient of t^k.

 

One obtains the coefficient

 

c := k -> (-1)^k*(polylog(-1 - k, -exp(x)) + polylog(-k, -exp(x)))*5^k/k!;

proc (k) options operator, arrow; (-1)^k*(polylog(-1-k, -exp(x))+polylog(-k, -exp(x)))*5^k/factorial(k) end proc

(1)

add(map(combine,simplify(c(k)))*t^k,k=0..6); # check

-exp(x)*(2+exp(x))/(1+exp(x))^2+10*exp(x)*t/(1+exp(x))^3+(50*exp(2*x)-25*exp(x))*t^2/(1+exp(x))^4+(125/3)*exp(x)*(4*exp(2*x)-7*exp(x)+1)*t^3/(1+exp(x))^5+(625/12)*exp(x)*(8*exp(3*x)-33*exp(2*x)+18*exp(x)-1)*t^4/(1+exp(x))^6+(625/12)*exp(x)*(16*exp(4*x)-131*exp(3*x)+171*exp(2*x)-41*exp(x)+1)*t^5/(1+exp(x))^7+(3125/72)*exp(x)*(32*exp(5*x)-473*exp(4*x)+1208*exp(3*x)-718*exp(2*x)+88*exp(x)-1)*t^6/(1+exp(x))^8

(2)

 

@Michael_Watson It seems that you want an asymptotic expansion. Note that you missed each time a paranthesis.

restart;

L/(z*L*sqrt((z/L)^2 + 1)): % = asympt(%,L,2);

1/(z*(z^2/L^2+1)^(1/2)) = 1/z+O(1/L^2)

(1)

L/(z*z*sqrt(1+(L/z)^2)): % = asympt(%,L,2) assuming z>0;

L/(z^2*(1+L^2/z^2)^(1/2)) = 1/z+O(1/L^2)

(2)

L/(z*sqrt(z^2 + L^2)): % = asympt(%,L,2);

L/(z*(L^2+z^2)^(1/2)) = 1/z+O(1/L^2)

(3)


Download Lz.mw

EQSYS:=proc(S1::set(`=`), S2::set(`=`), {vars:={x,y,z}, param:={t}}) 
  local A:=eliminate(S1,param)[2], B:=eliminate(S2,param)[2];
  evalb( eval(B,solve(A,vars)) union eval(A,solve(B,vars)) = {0});
end:

sys1:={16*x-2*y-11*z=0, 14*x-y-10*z=3}:
sys2:={(x-2)/3=(y-5)/2, (y-5)/2=(z-2)/4}:
sys2a:={ (x-2)/3=t, (y-5)/2=t, (z-2)/4=t }:
sys3:={x+y-z=2, x-z=77}:

EQSYS(sys1, sys2);
                              true

EQSYS(sys1, sys2a);
                              true

EQSYS(sys1, sys3);
                             false

 

You may use inert operators

ex := L/(z*sqrt(z^2 + L^2)):
subs(L=(L%/z), numer(ex)) %* (1/denom(ex*z));

But, why do you need this?

It makes sense to use Maple only for numeric purposes here. 
For the two examples, a few numeric computations will suggest the general result, but the proof must be given by hand.

a) The limit  (M⊗N)(a,b) = sqrt(a*b). The proof is simple, as mmcdara showed.

M := (a,b) -> (a+b)/2:
N := (a,b) -> 2*a*b/(a+b):
MN:=proc(M::procedure, N::procedure, a, b, n::nonnegint, nmax::nonnegint:=n)
  local an:=a, bn:=b, ab:=Vector(1), k; 
  ab[1]:=[a,b]; 
  for k to nmax do  an, bn := evalf(M(an,bn)), evalf(N(an,bn));
    if k>=n then ab(k+1-n):=[an,bn] fi 
  od;
 seq(ab);
end:
MN(M,N,1,2, 2,5);             # the sequence [a1,b1],[a2,b2], ...

    [1.416666666, 1.411764706], [1.414215686, 1.414211438], [1.414213562, 1.414213562], [1.414213562, 1.414213562]

MN(M,N, 1,2, 10) = sqrt(2.);  # [a10,b10]

            [1.414213562, 1.414213562] = 1.414213562

b)  The limit M⊗N is the logarithmic mean; this can be proven similarly to the Gauss' proof for the AGM mean.

L := (a, b) -> (b-a)/ln(b/a):  # the logarithmic mean
a:=2.:  b:=8.:
MN( (a,b) -> (a+sqrt(a*b))/2, (a,b) -> (b+sqrt(a*b))/2,  a, b, 50 ) = L(a,b);

        [4.328085124, 4.328085124] = 4.328085123

First 24 25 26 27 28 29 30 Last Page 26 of 121