vv

13932 Reputation

20 Badges

10 years, 29 days

MaplePrimes Activity


These are answers submitted by vv

The answer for your previous problem works here too.

restart;
eq:=x^2+y^2-N*(1+x*y):  # [x=0, y=sqrt(N)] and [x=sqrt(N),y=0] are solutions!
XY:=[X=x, Y=2*y-x*N]: xy:=solve(XY,[x,y])[]:
EQ:=simplify(eval(eq,xy)):
for N in [9, 49 , 729] do
  SOL:=isolve(EQ):
  sol[N]:=map(u -> simplify(eval(xy, u)), [SOL]);
  num:={seq}(simplify(sol[N])[],_Z1=0..2);
  print('N'=N, select(type,num, [anything=integer,anything=integer]));
od:

N = 9, {[x = -1497363, y = -13307787], 
  [x = -1497363, y = -168480], [x = -168480, y = -1497363], 
  [x = -168480, y = -18957], [x = -18957, y = -168480], 
  [x = -18957, y = -2133], [x = -2133, y = -18957], 
  [x = -2133, y = -240], [x = -240, y = -2133], 
  [x = -240, y = -27], [x = -27, y = -240], [x = -27, y = -3], 
  [x = -3, y = -27], [x = -3, y = 0], [x = 0, y = -3], 
  [x = 0, y = 3], [x = 3, y = 0], [x = 3, y = 27], 
  [x = 27, y = 3], [x = 27, y = 240], [x = 240, y = 27], 
  [x = 240, y = 2133], [x = 2133, y = 240], 
  [x = 2133, y = 18957], [x = 18957, y = 2133], 
  [x = 18957, y = 168480], [x = 168480, y = 18957], 
  [x = 168480, y = 1497363], [x = 1497363, y = 168480], 
  [x = 1497363, y = 13307787]}

N = 49, {[x = -96687343207, y = -4735705783543], 
  [x = -96687343207, y = -1974033600], 
  [x = -1974033600, y = -96687343207], 
  [x = -1974033600, y = -40303193], 
  [x = -40303193, y = -1974033600], [x = -40303193, y = -822857], 
  [x = -822857, y = -40303193], [x = -822857, y = -16800], 
  [x = -16800, y = -822857], [x = -16800, y = -343], 
  [x = -343, y = -16800], [x = -343, y = -7], [x = -7, y = -343], 
  [x = -7, y = 0], [x = 0, y = -7], [x = 0, y = 7], 
  [x = 7, y = 0], [x = 7, y = 343], [x = 343, y = 7], 
  [x = 343, y = 16800], [x = 16800, y = 343], 
  [x = 16800, y = 822857], [x = 822857, y = 16800], 
  [x = 822857, y = 40303193], [x = 40303193, y = 822857], 
  [x = 40303193, y = 1974033600], [x = 1974033600, y = 40303193], 
  [x = 1974033600, y = 96687343207], 
  [x = 96687343207, y = 1974033600], 
  [x = 96687343207, y = 4735705783543]}

N = 729, {[x = -4052517025117644747, y = -2954279352292037818803], 
  [x = -4052517025117644747, y = -5559018725201760], 
  [x = -5559018725201760, y = -4052517025117644747], 
  [x = -5559018725201760, y = -7625554438293], 
  [x = -7625554438293, y = -5559018725201760], 
  [x = -7625554438293, y = -10460313837], 
  [x = -10460313837, y = -7625554438293], 
  [x = -10460313837, y = -14348880], 
  [x = -14348880, y = -10460313837], [x = -14348880, y = -19683], 
  [x = -19683, y = -14348880], [x = -19683, y = -27], 
  [x = -27, y = -19683], [x = -27, y = 0], [x = 0, y = -27], 
  [x = 0, y = 27], [x = 27, y = 0], [x = 27, y = 19683], 
  [x = 19683, y = 27], [x = 19683, y = 14348880], 
  [x = 14348880, y = 19683], [x = 14348880, y = 10460313837], 
  [x = 10460313837, y = 14348880], 
  [x = 10460313837, y = 7625554438293], 
  [x = 7625554438293, y = 10460313837], 
  [x = 7625554438293, y = 5559018725201760], 
  [x = 5559018725201760, y = 7625554438293], 
  [x = 5559018725201760, y = 4052517025117644747], 
  [x = 4052517025117644747, y = 5559018725201760], 
  [x = 4052517025117644747, y = 2954279352292037818803]}

With sol[N] you may inspect the general solution depending on _Z1.


 

 

isolve is old and should be updated.

Actually isolve knows to solve generalized Pell equations. It only needs a little help to convert the diophantine quadratic to generalized Pell form.

At the end we must filter the obtained numeric solutions in order to eliminate the non-integer ones due to the form of xy, see below.

 

restart;

eq:=x^2 - 12*x*y + 6*y^2 + 4*x + 12*y - 3:

XY:=[X = 2*x-12*y+4, Y = -5*y+3]; # via complete squares

[X = 2*x-12*y+4, Y = -5*y+3]

(1)

xy:=solve(XY,[x,y])[];

[x = (1/2)*X+8/5-(6/5)*Y, y = -(1/5)*Y+3/5]

(2)

EQ:=simplify(eval(eq,xy));

(1/4)*X^2+19/5-(6/5)*Y^2

(3)

SOL:=isolve( EQ ):

sol:=map(u -> simplify(eval(xy, u)), [SOL]);

[[x = (1/10)*(30^(1/2)+7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-30^(1/2)+7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(3*30^(1/2)-17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-3*30^(1/2)-17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)-12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-3*30^(1/2)-17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(3*30^(1/2)-17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)-12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-30^(1/2)+7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(30^(1/2)+7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(30^(1/2)-7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-30^(1/2)-7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)-12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(3*30^(1/2)+17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-3*30^(1/2)+17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-3*30^(1/2)+17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(3*30^(1/2)+17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-30^(1/2)-7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(30^(1/2)-7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)-12)*(11+2*30^(1/2))^_Z1]]

(4)

nops(sol)

8

(5)

num:={seq}(simplify(sol)[],_Z1=0..20): # some numeric solutions

numsols:=select(type,num,  [anything=integer,anything=integer]);

{[x = 3, y = 1], [x = 3, y = 3], [x = 5, y = 1], [x = 5, y = 7], [x = 29, y = 3], [x = 29, y = 53], [x = 75, y = 7], [x = 75, y = 141], [x = 603, y = 53], [x = 603, y = 1151], [x = 1613, y = 141], [x = 1613, y = 3083], [x = 13205, y = 1151], [x = 13205, y = 25257], [x = 35379, y = 3083], [x = 35379, y = 67673], [x = 289875, y = 25257], [x = 289875, y = 554491], [x = 776693, y = 67673], [x = 776693, y = 1485711], [x = 6364013, y = 554491], [x = 6364013, y = 12173533], [x = 17051835, y = 1485711], [x = 17051835, y = 32617957], [x = 139718379, y = 12173533], [x = 139718379, y = 267263223], [x = 374363645, y = 32617957], [x = 374363645, y = 716109331], [x = 3067440293, y = 267263223], [x = 3067440293, y = 5867617361], [x = 8218948323, y = 716109331], [x = 8218948323, y = 15721787313], [x = 67343968035, y = 5867617361], [x = 67343968035, y = 128820318707], [x = 180442499429, y = 15721787313], [x = 180442499429, y = 345163211543], [x = 1478499856445, y = 128820318707], [x = 1478499856445, y = 2828179394181], [x = 3961516039083, y = 345163211543], [x = 3961516039083, y = 7577868866621], [x = 32459652873723, y = 2828179394181], [x = 32459652873723, y = 62091126353263], [x = 86972910360365, y = 7577868866621], [x = 86972910360365, y = 166367951854107], [x = 712633863365429, y = 62091126353263], [x = 712633863365429, y = 1363176600377593], [x = 1909442511888915, y = 166367951854107], [x = 1909442511888915, y = 3652517071923721], [x = 15645485341165683, y = 1363176600377593], [x = 15645485341165683, y = 29927794081953771], [x = 41920762351195733, y = 3652517071923721], [x = 41920762351195733, y = 80189007630467743], [x = 343488043642279565, y = 29927794081953771], [x = 343488043642279565, y = 657048293202605357], [x = 920347329214417179, y = 80189007630467743], [x = 920347329214417179, y = 1760505650798366613], [x = 7541091474788984715, y = 657048293202605357], [x = 7541091474788984715, y = 14425134656375364071], [x = 20205720480365982173, y = 1760505650798366613], [x = 20205720480365982173, y = 38650935309933597731], [x = 165560524401715384133, y = 14425134656375364071], [x = 165560524401715384133, y = 316695914147055404193], [x = 443605503238837190595, y = 38650935309933597731], [x = 443605503238837190595, y = 848560071167740783457], [x = 3634790445362949466179, y = 316695914147055404193], [x = 3634790445362949466179, y = 6952884976578843528163], [x = 9739115350774052210885, y = 848560071167740783457], [x = 9739115350774052210885, y = 18629670630380363638311], [x = 79799829273583172871773, y = 6952884976578843528163], [x = 79799829273583172871773, y = 152646773570587502215381], [x = 213816932213790311448843, y = 18629670630380363638311], [x = 213816932213790311448843, y = 409004193797200259259373], [x = 1751961453573466853712795, y = 152646773570587502215381], [x = 1751961453573466853712795, y = 3351276133576346205210207], [x = 4694233393352612799663629, y = 409004193797200259259373], [x = 4694233393352612799663629, y = 8979462592908025340067883], [x = 38463352149342687608809685, y = 3351276133576346205210207], [x = 38463352149342687608809685, y = 73575428165109029012409161], [x = 103059317721543691281150963, y = 8979462592908025340067883], [x = 103059317721543691281150963, y = 197139172850179357222234041], [x = 844441785831965660540100243, y = 73575428165109029012409161], [x = 2262610756480608595385657525, y = 197139172850179357222234041]}

(6)

nops(numsols);

82

(7)

{seq}( eval(eq, s), s=numsols); #check

{0}

(8)

 

 

Download dioph-sols-vv.mw

 

select(u -> nops(u)=m and andmap(isprime,u), L);

 

 

restart;

dis:= (A,B) -> sqrt( (A[1]-B[1])^2 + (A[2]-B[2])^2 ):
P:= unapply(dis(A,B)+dis(B,C)+dis(C,A), [A,B,C]):

A0:=[0,0]:
A1:=[u1,0]:
A2:=[u2,u3]:
A3:=v1*~A1:
A4:=A1+v2*~(A2-A1):
A5:=A1+v3*~(A2-A1):
A6:=A0+v4*~(A2-A0):
A7:=A0+v5*~(A2-A0):
A8:=A6+v6*~(A4-A6):

eps:=0.05:

perim:=
P(A0,A3,A6)=10, P(A6,A3,A4)=15, P(A3,A1,A4)=11,
P(A6,A8,A7)=9,  P(A8,A5,A7)=13, P(A8,A4,A5)=12,
P(A7,A5,A2)=20:

vars := u1=1..50, u2=1..50, u3=1..50,
v1=eps ..1-eps, v2=eps ..1-eps, v3=eps ..1-eps, v4=eps ..1-eps, v5=eps ..1-eps, v6=eps ..1-eps:

inisol:=[u1 = 8, u2 = 3, u3 = 12, v1 = 0.5, v2 = 0.3, v3 = 0.5, v4 = 0.09, v5 = 0.3, v6 = 0.5]:

sol:=DirectSearch:-SolveEquations([perim], [vars], initialpoint=inisol );

[7.928429359693041*10^(-17), Vector(7, {(1) = 0.1798504456e-8, (2) = -0.1393335225e-8, (3) = -0.7304805649e-9, (4) = 0.7992083439e-8, (5) = -0.1359651947e-8, (6) = 0.1542570516e-8, (7) = 0.2339469063e-8}), [u1 = 8.211758237046912, u2 = 1.8442345202064532, u3 = 12.033442054587029, v1 = .5526589984562774, v2 = .26313930832995064, v3 = .5414796127553622, v4 = 0.7943775626427665e-1, v5 = .2941739734925204, v6 = .485843681048224], 5405]

(1)

plots:-display(plot(eval([A0,A1,A2,A0],sol[3])), plot(eval([A3,A4,A6,A3],sol[3])), plot(eval([A5,A7,A8,A5],sol[3])), scaling=constrained);

 

eval([perim], sol[3]);

[HFloat(10.000000001798504) = 10, HFloat(14.999999998606665) = 15, HFloat(10.99999999926952) = 11, HFloat(9.000000007992083) = 9, HFloat(12.999999998640348) = 13, HFloat(12.00000000154257) = 12, HFloat(20.00000000233947) = 20]

(2)

eval(seq("A"||i=A||i,i=0..8), sol[3])

"A0" = [0, 0], "A1" = [HFloat(8.211758237046912), 0], "A2" = [HFloat(1.8442345202064532), HFloat(12.033442054587029)], "A3" = [HFloat(4.538302082851432), 0], "A4" = [HFloat(6.536212450422957), HFloat(3.166471619072571)], "A5" = [HFloat(4.763873960641556), HFloat(6.515863543831874)], "A6" = [HFloat(0.14650185231032542), HFloat(0.9559096369525809)], "A7" = [HFloat(0.5425257968612042), HFloat(3.539925463989865)], "A8" = [HFloat(3.2509023701302153), HFloat(2.029897207531015)]

(3)

 


(Edited - a typo).

Download perims-vv.mw

The curve length is infinite. The integrand has a singularity at t=ln(Pi/2):

restart;
f:= t -> sqrt((sin(t/cos(exp(t))) + t*(1/cos(exp(t)) + t*exp(t)*sin(exp(t))/cos(exp(t))^2)*cos(t/cos(exp(t))))^2 + (cos(t) - t*sin(t))^2 + 2*t):
a:=ln(Pi/2): evalf(a);
#                          0.4515827054

Digits:=15:
:-int(f, a..a+1/10, numeric, epsilon=1e-5);
#                     3.33001574946940* 10^13  
Optimization:-Minimize(AD, {CD=AB-2, BC=AB+2, AD=AB+BC+CD, AB>=1, BC>=1, CD>=1}, assume=integer);
#        [9, [AB = 3, AD = 9, BC = 5, CD = 1]]

 

eval(E-A, solve({C-A + D-B + E-C = a, D-B = b}, {A,B,C,D,E}));
#                             -b + a

 

 

A more precise version and a simple proof

 

The cited result is true only when the curbe is not "too flat" and in those cases the result of the limit is different.

 

To simplify things we shall consider the Ox axes as one of the tangents to the curve.

So, we shall take  f(0) = 0, f'(0) = 0.

 

 

The tangent at the point P(a, f(a)) intersects the Ox axis for the abscissa  c = a - f(a)/f'(a);

 

So, the ratio r of the two areas is

 

restart;

r := (a*f(a)/2 - int(f(t),t=0..a))/ (1/2 * (a-f(a)/D(f)(a))* f(a));

2*((1/2)*a*f(a)-(int(f(t), t = 0 .. a)))/((a-f(a)/(D(f))(a))*f(a))

(1)

# f(0) = 0, f'(0)=0

0

(2)

eval( r,  f = (u -> u^2*g(u)) ):
series(%, a);

series(2/3+(2*(-(1/30)*((D@@2)(g))(0)+(1/12)*(D(g))(0)^2/g(0))/g(0))*a^2+O(a^3),a,3)

(3)

Hence  limit(r, a=0)  = 2/3   indeed.

 

What happens if f is more "flat".  E.g. f(0) = 0, f'(0)=0, f''(0)=0

 

eval( r,  f = (u -> u^3*g(u)) ):
series(%, a);

series(3/4+((1/40)*(D(g))(0)/g(0))*a+O(a^2),a,2)

(4)

And so on; if the first nonzero derivative (at 0) is the 10th we obtain:

 

eval( r,  f = (u -> u^10*g(u)) ):
series(%, a, 14);

series(10/11+((2/297)*(D(g))(0)/g(0))*a+(2*((7/2574)*((D@@2)(g))(0)-(31/10692)*(D(g))(0)^2/g(0))/g(0))*a^2+O(a^3),a,3)

(5)

So, the limit will be  k/(k+1)  it  the first nonzero derivative of f at 0 is the k-th.


 

Download voller-vv.mw

Optimization:-NLPSolve works very well and fast without the need of any simplification.

restart;
Digits:=15:
e:=(x,y) -> x^2 + 2*y^2 - 1:
h:=(x,y) -> (x-sin(x))^2 + (y-sin(y))^2 - 1:
constr:=
e(x1,y1)=0, h(x2,y2)=0, h(x3,y3)=0, r>=0,
D[1](e)(x1,y1)*(y1-y0) - D[2](e)(x1,y1)*(x1-x0) = 0,
D[1](h)(x2,y2)*(y2-y0) - D[2](h)(x2,y2)*(x2-x0) = 0,
D[1](h)(x3,y3)*(y3-y0) - D[2](h)(x3,y3)*(x3-x0) = 0,
(x1-x0)^2 + (y1-y0)^2 = r^2,
(x2-x0)^2 + (y2-y0)^2 = r^2,
(x3-x0)^2 + (y3-y0)^2 = r^2,
x3 >= x2 + 1/10:

sol:=Optimization:-Maximize(r, {constr},   x0=1..1.4, y0=1..1.4, x1=0..1, y1=0..1, x2=1..2, y2=1..2, x3=1..2, y3=1..2);

sol := [0.769863723979874459, [r = 0.769863723979874, x0 = 1.13805882552303, x1 = 0.699729170630851, x2 = 1.27446720511737, x3 = 1.89574141571275, y0 = 1.13805882552303, y1 = 0.505162888466810, y2 = 1.89574141571275, y3 = 1.27446720511737]]

p1:=plots:-implicitplot(e, -2..2, -2..2): p2:=plots:-implicitplot(h, -2..2, -2..2):
p3:=plottools:-circle(eval([x0,y0],sol[2]), eval(r,sol[2]), color=red):
p4:=plots:-pointplot(eval([[x0,y0],[x1,y1],[x2,y2],[x3,y3]],sol[2]), symbolsize=8, color=blue):
p5:=plots:-textplot(eval({seq}([x||i,y||i,P__||i], i=0..3), sol[2]), align={below, left}, color=blue):
plots:-display(p1,p2,p3,p4,p5);

 

data_new := DataFrame(data_2, rows=[1,2]);

 

For a system of m polynomial equations of (total) degrees d_1, ..., d_m in n unknowns over C (or other algebraically closed field), the standard result is given by Bezout' theorem:

For m=n, the number of solutions is either infinite or <= d_1* d_2 * ...* d_m.

For details see: Bézout's theorem - Wikipedia

 

restart;
# f := floor;
f := x -> x^2:
X := [seq(x, x=-3..3,0.02)]: n:=nops(X):
Y := map(f, X):
C := Array(1..n, i -> X[i], datatype=float[8]):
plot(X,Y, color=COLOR(HUE, C), thickness=6);

The best method is probably using dsolve + fsolve, because fsolve + int(..., numeric) is too slow.

restart:
Digits:=15:
#eqList := ...
FS:=proc(a,f,t) 
    local u, ds, F;
    ds:=dsolve({diff(u(t),t) = f, u(-4)=0}, numeric, output=operator);
    F:=eval(u,ds);
    fsolve(F-a)
end proc: 
G:=e -> FS(op(1,e), op([2,1],e), op([2,2,1], e)):
map(G, eqList);

 [-4.00000000000000, -3.13995448471848, -2.11370056919619, 
  -1.52883183230736, -1.04840878317075, -0.706638188721254,
   -0.479577206139816, -0.315169354360080, -0.182432574734532, 
   -0.0625487819911634, 0.0891458203730475, 0.368690494498621, 
   1.50469145760957, 2.11552551065259, 2.46119669196488, 
   2.72088546517742, 2.96213514705916, 3.21307491249018, 
   3.59812548343646, 5.16349647450855, 6.56002211630892, 
   6.81413891022544, 6.66825093298453, 6.40577992538593, 
   6.19352683224088, 6.02201310955201, 5.95433562651451, 
   6.06761314123142, 6.32677648880848]

nops(eqList)=nops(%);
                            29 = 29

restart
L := [3*a0 + 2*a1, -a1/3 + a0/2 + 12*a3]:
x:=a3:

solve(select(has, L, x), x);

 

 

ex := x^4 + 3*(1+x^2)*f(x) + (x*x^2+x+1)*((D)(f)(x))^2 + (3*x+3)*(D@D)(f)(x):
eval( ex, f = (x -> (a1+a2*x+c*x^2+O(x^3)) ) ): 
series(%, x);
 #                   a2^2  + 3 a1 + 6 c + O(x)

Next time please post text, not pictures.

4 5 6 7 8 9 10 Last Page 6 of 120