vv

13992 Reputation

20 Badges

10 years, 38 days

MaplePrimes Activity


These are answers submitted by vv

restart;
f:=exp(-sec(t))*cos(t)/(-1/4+sin(t)^2):
g:=convert(series(f,t=Pi/6,3), polynom):
int(f-g, t = 0 .. Pi/2, numeric) + evalf(int(g, t = 0 .. Pi/2, CPV));

                         -0.6159737938

In my opinion Maple cannot be strictly separated from maths, so math questions should be OK (provided that Maple can/will be used for a solution).

First note that there is not such thing as "global inverse" of f, unless f (supposed to be C^1) is strictly monotonic.
If we know that f is strictly monotonic in [a,b], then its inverse will be
RootOf(f(x)-y, x, a..b),  where y is in the interval [min(f(a),f(b)), max(f(a),f(b))].

To find the intervals of monotonicity we need the real roots of f'(x). If solve is able to find all of them, we are done.
Of course the set of the roots could be infinite (even in a bounded interval). If a,b are two consecutive roots of f' then f is invertible (<==> strictly monotonic) in [a,b] as above.
 

 

 

f is continuous in R (provided that f(0) = 0), differentiable in R \ {0}, so, f ' (0) does not exist [and you must use the definition for this].

Please note that the inexistence of the limit of f ' (x) at x=0 is not the same with the non-differentiability of f at 0.

 

restart;

nor:=LinearAlgebra:-Norm:

c := t  -> (1 - cos(Pi*t))/2:

c1 := u -> solve(c(t_)-u,t_):

g:= (d,m,t) -> <t, seq(c(m^k*t),k=1..d-1)>;

proc (d, m, t) options operator, arrow; `<,>`(t, seq(c(m^k*t), k = 1 .. d-1)) end proc

(1)

plot(c, 0..5);

 

g(3,10,t);
plots:-spacecurve(g(3,10,t),t=0..1, numpoints=10000,color=red);

Vector(3, {(1) = t, (2) = 1/2-(1/2)*cos(10*Pi*t), (3) = 1/2-(1/2)*cos(100*Pi*t)})

 

 

T := proc(x::{list,Vector},m::posint)
local d:=numelems(x), t:=Vector(d),td,N,i,j;
t[1]:=floor(m*x[1]);
for i from 2 to d do
  N:= add(t[j]*m^(i-1-j), j=1..i-1);
  td:=c1( (-1)^N*(x[i]-1/2)+1/2 );
  t[i]:=floor( td * m );
od;
t[d]:=td*m;
evalf(add(t[i]/m^i,i=1..d));
end:  
 

Digits:=20:
d:=5: m:=100:   # check
to 50 do
  x:=LinearAlgebra:-RandomVector(d,generator=rand(0.0..1.0) ):
  tx:=T(x, m):
  gt:=g(d,m,tx):
  nor(x-gt,2)<sqrt(d-1)/m: evalf[10](%); print(Vector[row](x-gt),%,evalb(%));
od:

Vector[row](5, {(1) = 0.2245175949597057137e-2, (2) = 0.178700890374408893e-2, (3) = 0.502818085808100077e-2, (4) = 0.316188321077255800e-2, (5) = -0.6998708000e-15}), 0.6596538793e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.614205816283349693e-2, (2) = 0.58272696109815946e-3, (3) = 0.495928784131864040e-2, (4) = 0.381567203511813577e-2, (5) = 0.9414680500e-12}), 0.8787396552e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.586928409452430485e-2, (2) = 0.185056101232407102e-2, (3) = -0.1082881038373104706e-1, (4) = -0.3942168588339884894e-2, (5) = -0.4083914300e-12}), 0.1306433693e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.319600571683232791e-2, (2) = 0.1940509658645814175e-2, (3) = -0.653193795808389261e-2, (4) = -0.371827178092912454e-2, (5) = 0.2294257300e-11}), 0.8394747691e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.403959205986585828e-2, (2) = -0.1079273520512657950e-1, (3) = 0.355004577119255623e-2, (4) = -0.552511049641019727e-2, (5) = -0.9044114000e-13}), 0.1326390245e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.1243254335959312306e-2, (2) = -0.135800350252244505e-2, (3) = 0.473531960625732755e-2, (4) = 0.190711504155047987e-2, (5) = -0.4099288000e-13}), 0.5426803333e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.261962070266442793e-2, (2) = 0.171242859980398808e-2, (3) = 0.472919563680099705e-3, (4) = 0.4077468707718304194e-2, (5) = 0.1172276170e-11}), 0.5161804753e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.70425142720743796e-3, (2) = 0.371442276276967716e-2, (3) = 0.3207496584664778946e-2, (4) = 0.327778569310831046e-2, (5) = -0.8894589100e-12}), 0.5943468678e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.619845830097949042e-2, (2) = -0.3816343176658510635e-2, (3) = 0.255797091847471485e-2, (4) = 0.754622514135589480e-2, (5) = 0.4083021500e-12}), 0.1079231623e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.275882001720814820e-2, (2) = -0.113703586090948656e-2, (3) = -0.314753579794591941e-2, (4) = -0.670461269520757691e-2, (5) = -0.1070629390e-11}), 0.7985158197e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.310748361632089640e-2, (2) = 0.957346041346005009e-2, (3) = 0.296568346652236863e-3, (4) = 0.13644158538005765e-3, (5) = 0.2925298400e-12}), 0.1007046016e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.511755200815169579e-2, (2) = -0.231197153602198405e-2, (3) = 0.122532239719994439e-2, (4) = 0.1042815589001761737e-1, (5) = 0.1504406490e-12}), 0.1190724154e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.9399143835186173e-4, (2) = -0.183745957326462722e-2, (3) = -0.427579604196086895e-2, (4) = 0.589628853634182031e-2, (5) = 0.1389082070e-11}), 0.7512239504e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.451747602775906765e-2, (2) = -0.18087631646913584e-3, (3) = -0.441753325942565300e-2, (4) = -0.483896941010406977e-2, (5) = 0.3939638200e-12}), 0.7960560970e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.296209474675120431e-2, (2) = 0.642782211537201029e-2, (3) = -0.499917399430419126e-2, (4) = 0.239882013789489116e-2, (5) = 0.1268748590e-11}), 0.8990938834e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.268336241605795273e-2, (2) = 0.247738254723468146e-2, (3) = -0.311760622046606805e-2, (4) = -0.1103602126608338809e-1, (5) = 0.1577367720e-11}), 0.1203540993e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.60591631531697656e-3, (2) = 0.973038432364687423e-3, (3) = 0.241205747973921853e-2, (4) = 0.891126284059033480e-2, (5) = -0.2088726900e-12}), 0.9302825650e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.320902998616073463e-2, (2) = -0.100163300251327827e-2, (3) = 0.83748952784675779e-3, (4) = -0.258877667797425055e-2, (5) = -0.1425632680e-11}), 0.4324846300e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.479767050784526983e-2, (2) = -0.641702791126071034e-2, (3) = -0.209589326829079752e-2, (4) = 0.516914285221134588e-2, (5) = -0.1013133900e-12}), 0.9762617269e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.470543115375124229e-2, (2) = -0.438760161362192393e-2, (3) = 0.251639916895022527e-2, (4) = -0.124394006337165176e-2, (5) = -0.5434022500e-12}), 0.7019386150e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.235804118185165489e-2, (2) = 0.607772219611439259e-2, (3) = -0.359359187776981942e-2, (4) = -0.362090024481772109e-2, (5) = -0.2549344700e-12}), 0.8277915588e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.222007002543814218e-2, (2) = -0.19266088126927887e-3, (3) = 0.1838329070756913547e-2, (4) = -0.16227993312995806e-3, (5) = -0.3340775030e-11}), 0.2893374791e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.422005134521964257e-2, (2) = -0.194584250992639647e-2, (3) = -0.92984029266901054e-3, (4) = -0.38046948905607169e-3, (5) = 0.1621784000e-12}), 0.4754418622e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.72923453878922316e-3, (2) = -0.139804634320469602e-2, (3) = -0.29718662794632406e-3, (4) = -0.560421045991363441e-2, (5) = -0.5399395000e-13}), 0.5829392023e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.368685977669783485e-2, (2) = -0.373956751827731446e-2, (3) = -0.639498151574874456e-2, (4) = 0.1340857540050587714e-1, (5) = -0.4525906100e-12}), 0.1575636326e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.3078985582025345382e-2, (2) = 0.71049171296069372e-3, (3) = 0.542269145667356283e-2, (4) = -0.31978153021381634e-3, (5) = -0.1669304400e-12}), 0.6284329204e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.125321801628151357e-2, (2) = 0.688496424534676266e-3, (3) = -0.1590834201e-5, (4) = -0.28561582084002077e-3, (5) = 0.7879995500e-12}), 0.1458136362e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.187235009111001751e-2, (2) = 0.1393850477571501164e-2, (3) = 0.366115015658015357e-2, (4) = 0.361009340740225135e-2, (5) = -0.6332305600e-12}), 0.5646707793e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.156828627027680846e-2, (2) = -0.130132327224703670e-2, (3) = -0.104340521870953124e-2, (4) = 0.67928102725709501e-3, (5) = -0.3627550000e-14}), 0.2388112487e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.74353786025047025e-3, (2) = 0.317101011389826762e-2, (3) = 0.180693705013200166e-2, (4) = -0.2894566065450748756e-2, (5) = -0.4520790200e-12}), 0.4717169480e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.224321675021188086e-2, (2) = -0.166030766538155720e-2, (3) = 0.530173489916569672e-2, (4) = 0.261555980367242049e-2, (5) = 0.6999531000e-13}), 0.6537445140e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.177489617880375083e-2, (2) = 0.112559822704104403e-2, (3) = 0.155856332083461695e-2, (4) = 0.3523428502787770390e-2, (5) = 0.1577433130e-11}), 0.4388723716e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.142248928200009240e-2, (2) = -0.366317043660385106e-2, (3) = -0.275863834767106840e-2, (4) = 0.266928572960701061e-2, (5) = -0.7193998600e-12}), 0.5493401974e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.903253218527791813e-3, (2) = 0.760425612883232736e-2, (3) = -0.809816385216884054e-2, (4) = 0.200233217527449387e-2, (5) = 0.1313319900e-12}), 0.1132387608e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.269912109790725060e-2, (2) = 0.683589706601734925e-2, (3) = 0.750749259310287591e-2, (4) = -0.776618315016855834e-2, (5) = 0.9435919300e-12}), 0.1306486851e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.418256226678040169e-2, (2) = -0.550978964770481340e-2, (3) = -0.47706898189747461e-3, (4) = 0.1048590566434820137e-1, (5) = 0.1794301100e-12}), 0.1257113446e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.367774623133392882e-2, (2) = 0.338290688229710182e-2, (3) = -0.14497184375394752e-3, (4) = -0.231018536402677748e-2, (5) = -0.5805422100e-12}), 0.5507072686e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.308025432076038944e-2, (2) = 0.453505174176875314e-2, (3) = 0.333904919004368431e-2, (4) = 0.7255898944310806e-4, (5) = -0.7694659500e-12}), 0.6419437303e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.485697503452520250e-2, (2) = 0.686391456316770274e-2, (3) = 0.6784068578533270851e-3, (4) = 0.408053528967211488e-2, (5) = -0.8724029300e-12}), 0.9370940920e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.473633837121329318e-2, (2) = -0.1045583377707223185e-1, (3) = -0.3228661437095516013e-2, (4) = -0.2685323647052749672e-2, (5) = 0.1515649540e-12}), 0.1222262570e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.377933027792209362e-2, (2) = -0.551129857571372329e-2, (3) = -0.26092730504601421e-3, (4) = 0.95950207365360741e-3, (5) = 0.1770566570e-11}), 0.6756217627e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.76145764706622248e-3, (2) = -0.2390831790194682196e-2, (3) = -0.497098638379546841e-2, (4) = 0.58261853861024700e-3, (5) = -0.2536705870e-11}), 0.5598753824e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.30312958994790132e-3, (2) = 0.30543629043494512e-3, (3) = 0.577377433296877592e-2, (4) = 0.33606623697169290e-3, (5) = 0.2461563000e-12}), 0.5799533554e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.154052538043282555e-2, (2) = 0.337000037279360873e-2, (3) = 0.32661409377263359e-3, (4) = -0.560879683824746114e-2, (5) = 0.3804276500e-12}), 0.6730185711e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.392761758034173186e-2, (2) = -0.217276325877687460e-2, (3) = -0.935392453205133960e-2, (4) = -0.460279671189654340e-2, (5) = -0.3172334940e-11}), 0.1135027408e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.144432976285397077e-2, (2) = 0.108651745255581567e-2, (3) = 0.86678974009380951e-3, (4) = -0.569753959951737504e-2, (5) = -0.2314541300e-11}), 0.6039858490e-2 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.128131422607133849e-2, (2) = 0.680749855560426033e-2, (3) = 0.416695032117804010e-2, (4) = 0.6912351285026329273e-2, (5) = 0.2371383200e-12}), 0.1063615899e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = 0.193745529333707771e-3, (2) = 0.283962100082164068e-2, (3) = 0.201340260013797986e-2, (4) = 0.991047039966587666e-2, (5) = 0.2539255400e-13}), 0.1050581736e-1 < 0.2000000000e-1, true

 

Vector[row](5, {(1) = -0.105796763334716159e-2, (2) = -0.300733439200737383e-2, (3) = 0.561062685289715871e-2, (4) = 0.911453541107139415e-2, (5) = -0.1589016430e-11}), 0.1116768754e-1 < 0.2000000000e-1, true

 

Vector[row](%id = 18446744074331819414), 0.7833455316e-2 < 0.2000000000e-1, true

(2)

 


Download space-fill-quasi-sent.mw

F := k -> sum(i^k, i=1..n);

seems to be faster.

 

The exact solution (just for fun).

restart;

h:=1: g:=1:  r:=1/2:

v0:=sqrt(2*g*h):

T:= n -> v0/g*(1+r-2*r^n)/(1-r):

Too := v0/g*(1+r)/(1-r): # = T(infinity)

Y:=proc(t)
local n := floor( ln(-t*sqrt(2)*g*(1-r)/(4*sqrt(g*h))+1/2+(1/2)*r)/ln(r) ),
      tau:= t - T(n);
piecewise(t<Too, v0*r^n*tau - g/2*tau^2, 0)
end:

plot(Y(t), t=0..Too, size=[1200,800]);

 

Y(t);

piecewise(t < 3*sqrt(2), sqrt(2)*(1/2)^floor(-ln(-(1/8)*t*sqrt(2)+3/4)/ln(2))*(t-2*sqrt(2)*(3/2-2*(1/2)^floor(-ln(-(1/8)*t*sqrt(2)+3/4)/ln(2))))-(1/2)*(t-2*sqrt(2)*(3/2-2*(1/2)^floor(-ln(-(1/8)*t*sqrt(2)+3/4)/ln(2))))^2, 0)

(1)

Too;

3*2^(1/2)

(2)

 

Probably the designers considered that the color, linestyle, thickness are enough for the legend (which I also do).

Anyway, the symbols seem to be useless here because their exact position is not known.

You have the Physics package loaded. It redefines many things, including diff.
The conversion works as expected if you don't use the package (which is not needed in the worksheet).

If you have the curve in polar coordinates, then DirectSearch or fsolve is not needed.
Something like this (for a modified cardioid):

r:=t->2*(1-cos(t))+1:
plots:-animate(plot, 
[[[r(t-u)*cos(t),r(t-u)*sin(t),t=0..2*Pi] ,
[[0,r(Pi/2-u)*sin(Pi/2)],[0,2+r(Pi/2-u)*sin(Pi/2)]]   ],thickness=[1,6]],
u=0..2*Pi, scaling=constrained);

You cannot use plot3d(f(x,y)=0.1, x=0..1,y=0..1);
Probably you want plots[implicitplot](f(x,y)=0.1, x=0..1,y=0..1);

For z=0..1  just use the view option.
Compare:

plot3d(x^2+y^2, x=-1..1, y=-1..1);
plot3d(x^2+y^2, x=-1..1, y=-1..1, view=0..1);


 

In my opinion the student should be taught to use a single simple line of code

s := n -> s(n-1)^2 - 2;   s(1) := 4;

defining his own sequence:
s(4);
     
37634
 seq(s(n), n=1..5);  
     
4, 14, 194, 37634, 1416317954

First 72 73 74 75 76 77 78 Last Page 74 of 120