vv

13992 Reputation

20 Badges

10 years, 39 days

MaplePrimes Activity


These are answers submitted by vv

The fact is that pdsolve is not very competent with initial conditions
and we must do it ad-hoc:

ds:=pdsolve({sys}) ;
           {x(t, s) = _F1(s) sin(t) + _F2(s) cos(t),
             y(t, s) = _F1(s) cos(t) - _F2(s) sin(t)}
ds0:=eval(ds,t=0);
              {x(0, s) = _F2(s), y(0, s) = _F1(s)}
subs(ds0, [ic]);
                 [_F2(s) = a(s), _F1(s) = b(s)]
eval(ds,%);
             {x(t, s) = b(s) sin(t) + a(s) cos(t),
               y(t, s) = b(s) cos(t) - a(s) sin(t)}

 

 

For these kinds of maniputations, the vectors, lists, matrices etc were invented.
Example using column vectors:

gamma__w :=10:
z := <2, 1, 0, -1, -4, -7>:
h := <2, 1, 0,  0,  0,  0>:

gamma__w * (h-z);

                   

 

 

 

You have a polynomial systems with many parameters.
The result of solve would be huge and in terms of RootOfs.

Just to make an idea, let's eliminate C4 between the first two equations:

poly:=(numer@lhs)~([eq1,eq2,eq3,eq4]):
resultant(poly[1], poly[2], C4);

You will see that even this first step gives a huge polynomial.

For numerical results, give values to parameters and use fsolve.

 

The residuals are much smaller using LSSolve:

eq:=[seq(lhs(EQQ[i]),i=1..36)]:
Digits:=15:
s:=Optimization:-LSSolve(evalf(eq),iterationlimit=100000);


s := [0.960968723053680e-3, [AA[1] = -.347787136052672, AA[2] = 0.510086502851874e-1, AA[3] = 1.16178642934306, AA[4] = .283780970480705, AA[5] = 0.639701227912076e-1, AA[6] = 0.167348852743906e-2, AA[7] = .970111340350232, AA[8] = 0.123075237465221e-1, AA[9] = -2.56229943109674, AA[10] = .119761186424375, AA[11] = 0.514762128059566e-1, AA[12] = 0.653686059489268e-2, AA[13] = 1.17224901537396, AA[14] = 0.123075188025341e-1, AA[15] = -3.10469172766768, AA[16] = .119761196994863, AA[17] = 0.514762189628706e-1, AA[18] = 0.653685044254999e-2, AA[19] = .970010263800571, AA[20] = 0.122243656427024e-1, AA[21] = -2.56235367446998, AA[22] = .119187577004902, AA[23] = 0.512617524055109e-1, AA[24] = 0.636735006533654e-2, AA[25] = 1.17214793882475, AA[26] = 0.122243606766083e-1, AA[27] = -3.10474597103813, AA[28] = .119187587581231, AA[29] = 0.512617585634991e-1, AA[30] = 0.636733990163037e-2, AA[31] = .516890321334600, AA[32] = 0.510086073253494e-1, AA[33] = -1.15838655820066, AA[34] = .283780982288442, AA[35] = 0.639701289588585e-1, AA[36] = 0.167348506238467e-2]]

Digits:=40:
eval( evalf(eq), s[2]);


Unfortunately LSSolve seems to get stuck for Digits>15.

 

 

Because we already know what has to be proved, it could be done like this:

 

x1 := arcsin(1/2*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))

solve(sin(32*x)=expand(sin(32*x1)),allsolutions);

(1/32)*Pi*_Z1

(1)

a:=subs( indets(%)[]=n,%);

(1/32)*Pi*n

(2)

min[index]( [seq(abs(x1 - a), n=1..16)] );

15

(3)

'x1'=eval(a, n=%);

x1 = (15/32)*Pi

(4)

 


 

restart;

sys:= [diff(f(x, y, t, u), u, t)-(diff(f(x, y, t, u), x, y)) = 0,
       diff(f(x, y, t, u), u, u) = 0,
       diff(f(x, y, t, u), u, y) = 0,
       diff(f(x, y, t, u), x, u) = 0,
       diff(f(x, y, t, u), x, x) = 0,
       diff(f(x, y, t, u), y, y, y) = 0];

[diff(diff(f(x, y, t, u), t), u)-(diff(diff(f(x, y, t, u), x), y)) = 0, diff(diff(f(x, y, t, u), u), u) = 0, diff(diff(f(x, y, t, u), u), y) = 0, diff(diff(f(x, y, t, u), u), x) = 0, diff(diff(f(x, y, t, u), x), x) = 0, diff(diff(diff(f(x, y, t, u), y), y), y) = 0]

(1)

S0:=pdsolve(sys);

{f(x, y, t, u) = (_F3(t)*y+_F4(t))*x+(_F3(t)+_C1)*u+(1/2)*_F7(t)*y^2+_F8(t)*y+_F9(t)}

(2)

pdetest(S0,sys);  # bug

[diff(_F3(t), t)-_F3(t), 0, 0, 0, 0, 0]

(3)

S00:=eval(S0, _F3(t)=c*exp(t));

{f(x, y, t, u) = (c*exp(t)*y+_F4(t))*x+(c*exp(t)+_C1)*u+(1/2)*_F7(t)*y^2+_F8(t)*y+_F9(t)}

(4)

pdetest(S00,sys);  # So, S00 is a solution.  But is it the general one?

[0, 0, 0, 0, 0, 0]

(5)

Let us try to answer this question.

 

 

#####################################

 

S1:=pdsolve(sys[2..-1]);  # remove the first PDE

{f(x, y, t, u) = (1/2)*(2*_F5(t)+y*(_F3(t)*y+2*_F4(t)))*x+_F8(t)*u+(1/2)*_F9(t)*y^2+_F10(t)*y+_F11(t)}

(6)

pdetest(S1,sys[2..-1]); #ckeck OK

[0, 0, 0, 0, 0]

(7)

pdetest(S1,sys);

[diff(_F8(t), t)-_F3(t)*y-_F4(t), 0, 0, 0, 0, 0]

(8)

solve(%,_F4(t));

{_F4(t) = -_F3(t)*y+diff(_F8(t), t)}

(9)

S2:=eval(S1,%);

{f(x, y, t, u) = (1/2)*(2*_F5(t)+y*(-_F3(t)*y+2*(diff(_F8(t), t))))*x+_F8(t)*u+(1/2)*_F9(t)*y^2+_F10(t)*y+_F11(t)}

(10)

# S2 should be the general solution of the initial system

pdetest(S2,sys);

[_F3(t)*y, 0, 0, 0, 0, 0]

(11)

# But it is not. Conclusion: the solution S1 of the system S[2..-1] is not the general one.
# So, probably S00 is not general too.
# It should be simple to check this by hand.

###########################################

 


 

Download pde-bug.mw

Edit.  I made a mistake when solving for _F4.
_F3  must be necessarily 0 (due to the presence of y)
So, actually S2 must be

So, indeed, S00 is not general (for example f = t*u+x*y is not contained in S00), but S1 could be after all correct; it would be interesting to check this by hand.
 

 

 

 

subs[eval](F = ( (x,y)->f(x)+g(y) ), F(x,x) );

(Of course [eval] is not mandatory, just to obtain th result evaluated.)

The problem reduces to find/guess  the next term(s) of the sequence:

1, -1/2, 1/12, -1/72, 1/504, -5/18144, 1/27216, -95/19813248

It should be obvious that without extra information this is impossible. Maybe Nostradamus ...

 

Edit. Example:
f := convert( series(cos(x)+x^2, x, 14), polynom):
L := [seq(coeff(f, x, n), n = 0 .. 12)];

    L := [1, 0, 1/2, 0, 1/24, 0, -1/720, 0, 1/40320, 0, -1/3628800, 0, 1/479001600]

rec := gfun:-listtorec(L, u(n));    # not the expected one
     rec := [{(n^3-26*n^2-449*n+538)*u(n+1)+(-707*n^3-1737*n^2+1283*n+393)*u(n+3), u(0) = 1, u(1) = 0, u(2) = 1/2}, ogf]

 


 

ImportMatrix("http://fs3.fex.net/get/245716150875/11071260/data.txt"):
V:=convert(%,Vector);

 

You have generated only a small number of partitions: 1401400 (=nops(P)),  the total number being bell(N-1) = 27644437.

N is too large for a brute force solution (and with your attempt to insert also the permutations, the needed memory is huge).
I think that a very good (or a heuristic) algorithm is needed here.

Optimization:-Maximize((1-y^2)/(x^2),{x^2 + y^2 <= 1, x>=1/2}, x=1/2..1,  y=-1..1  );
            [ 4., [x = 0.5, y = 0.0] ]

 

The answer should be obvious without Maple.
For f(u,v) = 1/(u+v)^2+4*u*v-1,

f(0+, 2) = - 3/4 < 0,  f(1, 1) > 0.
f being continuous in the connected domain (0,oo) x (0, oo),  f must be 0 somewhere.

inequal can be used only for two variables.

with(PolyhedralSets):
ps := PolyhedralSet({-5 <= 4*y1+2*y2+3*y3, -2 <= 3*y1+5*y2+2*y3, -1 <= y1+2*y2+y3, 0 <= y2, y1 <= 0}):
Plot(ps);

G:=convert(F,RootOf):
evala(AFactors(G));
convert(%,radical); #optional

 

#   GroupTheory:-PermParity(Perm(L));
GroupTheory:-PermParity(Perm([1,2,3,5,4]));

                               -1

 

First 89 90 91 92 93 94 95 Last Page 91 of 120