A string is wound symmetrically around a circular rod. The string goes exactly
4 times around the rod. The circumference of the rod is 4 cm and its length is 12 cm.
Find the length of the string.
Show all your work.

(It was presented at a meeting of the European Mathematical Society in 2001,
"Reference levels in mathematics in Europe at age16").

Can you solve it? You may want to try before seing the solution.
[I sometimes train olympiad students at my university, so I like such problems].

1. Maple solution

eq:= 2/Pi*cos(t), 2/Pi*sin(t), 3/2/Pi*t; # The equations of the helix, t in 0 .. 8*Pi:
p:=plots[spacecurve]([eq, t=0..8*Pi],scaling=constrained,color=red, thickness=5, axes=none):
plots:-display(plottools:-cylinder([0,0,0], 2/Pi, 12, style=surface, color=yellow),
                         p, scaling=constrained,axes=none);

VectorCalculus:-ArcLength(<eq>, t=0..8*Pi);



2. Elementary solution

Let's look at the first loop around the rod.
If we develop the corresponding 1/4 of the cylinder, it results a rectangle  whose sides are 4 and 12/4 = 3.
The diagonal is 5 (ask Pythagora why), so the length of the string is 4*5 = 20.


Please Wait...