Teaching and learning about math, Maple and MapleSim

Here is a problem from SEEMOUS 2017 (South Eastern European Mathematical Olympiad for University Students)
which Maple can solve (with a little help).

For k a fixed nonnegative integer, compute:

Sum( binomial(i,k) * ( exp(1) - Sum(1/j!, j=0..i) ), i=k..infinity );

(It is the last one, theoretically the most difficult.)

Application that allows us to measure the reliability of a group of data through a row and columns called cronbach alpha at the same time to measure the correlation of items through the pearson correlation of even and odd items. It can run on maple 18 to maple 2017. This will be useful when we are developing a thesis in the statistical part.

In Spanish

Lenin Araujo Castillo

Ambassador of Maple




I have proposed a SE site for maple.

This will help to put maple on SE.

Please follow this site.


We have moved to the next phase Commitment. Come and join us.

   Maplesoft aims to promote innovation in science, technology, engineering and math (STEM) in high school students by partnering with various organizations, and sponsoring initiatives in education, research and innovation. Every year, Maplesoft commits time, funds and people to enhance the quality of math-based learning and discovery and to encourage high school students to strengthen their math skills.

   One such organization we partner with is The Perimeter Institute, a leading centre for scientific research, training and educational outreach in foundational theoretical physics.  Maplesoft currently serves as its Educational Outreach Champion, supporting various initiatives that promote math learning and exploration. Perhaps the most popular of its student outreach program is the annual International Summer School for Young Physicists (ISSYP), a two-week camp that brings together 40 exceptional students from high schools across the globe.  Each year students receive a complimentary copy of Maple, and use the product to practice and strengthen their math skills.  The ISSYP program also uses Möbius, the comprehensive online STEM courseware platform from Maplesoft, to offer preparatory course materials to students.  Completing lessons in Möbius aid in making the summer program a more productive and dynamic experience for the students.


International Summer School for Young Scientists at Perimeter Institute


   Who Wants to Be a Mathematician is a competition organized by the American Mathematical Society (AMS) for high school students in North America. Maplesoft has been a sponsor of the contest for many years.  Maple T.A., the testing and assessment tool by Maplesoft, is used to administer the tests online, saving significant time and money for the organizers. When Maplesoft first introduced Maple T.A. to the contest, taking the competition from pen-and-paper tests to online tests, the number of contestants doubled, with about 2000 students participating in the contest. Maplesoft also donates prizes to the games in order to promote the use and love of math by high school students.  This year will be first time the competition moves international. Six students in the UK took the Round 2 qualifying test, with the use of Maple T.A., and qualified for the live, on-stage finals of the UK edition of the competition that took place at the 2017 Maths Fest in London. Maplesoft is also supporting the spread of the WWTBAM contest to Canada in 2017.

Who Wants to be a Mathematician finals

Maplesoft also sponsors two outreach initiatives in Texas A&M University.  The Summer Educational Enrichment (SEE) Math Program is a summer workshop attended by gifted middle school students. Students spend two weeks exploring ideas such as algebra, geometry, graph theory, and topology.  The University also conducts the Integral Bee every year, a math based contest for high school students.

In addition to the above key projects, throughout the year Maplesoft also sponsors and is associated with a number of other competitions, conferences, and educational initiatives. A few of these are listed below.

  • The Connecticut Science & Engineering Fair is a yearly, statewide science and engineering fair open to all 7th through 12th grade students.  An important objective of their program is to attract young people to careers in science and engineering while developing skills essential to critical thinking.
  • FIRST Robotics Competition is a high school robotics competition. Each year, teams of high school students and mentors work during a six-week period to build game-playing robots that weigh up to 120 pounds.


FIRSTRobotics Competition

  • ScienceExpo Conference is a student-run event that engages students with STEM-related opportunities and workshops
  • SWATposium is an annual robotics conference that brings together nearly 40 First Robotic Competition teams from both Canada and the United States for a day of guest speakers, workshops and social activities.



  • FIRST LEGO League gives elementary and middle school students and their adult coaches the opportunity to work and create together to solve a common problem.


FIRST LEGO League at St. Luke's School in Waterloo

   Maplesoft’s objective of these sponsorships is to support those who inspire and channel young minds to be STEM focussed. By engaging them in exciting contests and programs the hope is that they build science, engineering, and technology skills at a young age and grow to be innovators and technology leaders of tomorrow.

The distance from the point to the surface easily calculated using the NLPSolve of Optimization package. If the point is not special, we will find for it a point on the surface, the distance between these two points is the shortest between the selected point and the surface.
Two examples:  the implicit surface and the parametric surface.
To test, we restore the normals from the  calculated  points (red) by using analytical equations.

In the present work it has been shown how Maple helps in the teaching of Mathematics in the different subjects that it has. Using a Maple worksheet as if it were a class preparation notebook could develop problems such as: Vector Analysis, EDO, EDP, Statistics, Algebra, Geometry, etc., among others; Taking as a method of solution the clickable-mathpopup, the right click (contextual) or at best embedded components. No criteria or prerequisite is needed to use Maple; Rather than being willing to forget the traditional slate and down and replace it with dynamic leaves that maple offers us; To achieve excellent academic profiles both individually and in groups. The proprietary methods are used to develop applications (math-apps) being a professional criterion; That is to say, according to the problematic reality, we are looking for enduring interactive solutions. Here we use the graphical algorithm and the block diagram as a solution proposal but not as something obligatory to implement solutions. We take as a teaching-learning measure the results of our students in the ability to analyze and interpret the results; Since in the times of calculation; Maple helps tremendously; Opening up this way to train students competent in basic sciences and engineering.



In Spanish

Lenin Araujo Castillo

Ambassador of Maple - Perú



In the creation of this animation the technique from here  was used.




The code of this animation:

with(plots): with(plottools):
SmallHeart:=plot([1/20*sin(t)^3, 1/20*(13*cos(t)/16-5*cos(2*t)/16-2*cos(3*t)/16-cos(4*t)/16), t = 0 .. 2*Pi], color = "Red", thickness=3, filled):
F:=t->[sin(t)^3, 13*cos(t)/16-5*cos(2*t)/16-2*cos(3*t)/16-cos(4*t)/16]:
Gf:=display(translate(SmallHeart, 0,0.37)):
Gl:=display(translate(SmallHeart, 0,-1)):
G:=t->display(translate(SmallHeart, F(t)[])):
A:=display(seq(display(op([Gf,seq(G(-Pi/20*t), t=3..k),seq(G(Pi/20*t), t=3..k)]))$4,k=2..17),display(op([Gf,seq(G(-Pi/20*t), t=3..17),seq(G(Pi/20*t), t=3..17),Gl]))$30, insequence=true, size=[600,600]):
B:=animate(textplot,[[-0.6,0.25, "Happy"[1..round(n)]],color="Orange", font=[times,bolditalic,40], align=right],n=0..5,frames=18, paraminfo=false):
C:=animate(textplot,[[-0.2,0, "Valentine's"[1..round(n)]],color=green, font=[times,bolditalic,40], align=right],n=1..11,frames=35, paraminfo=false):
E:=animate(textplot,[[-0.3,-0.25, "Day!"[1..round(n)]],color="Blue", font=[times,bolditalic,40], align=right],n=1..4,frames=41, paraminfo=false):
T:=display([B, display(op([1,-1,1],B),C), display(op([1,-1,1],B),op([1,-1,1],C),E)], insequence=true):
K:=display(A, T, axes=none):

The last frame of this animation:

display(op([1,-1],K), size=[600,600], axes=none);  # The last frame


Edit. The code was edited - the number of frames has been increased.

Suppose we have some simple animations. Our goal - to build a more complex animation, combining the original animations in different ways.
We show how to do it on the example of the three animations. The technique is general and can be applied to any number of animations.

Here are the three simple animations:

A:=animate(plot, [sin(x), x=-Pi..a, color=red, thickness=3], a=-Pi..Pi):
B:=animate(plot, [x^2-1, x=-2..a, thickness=3, color=green], a=-2..2): 
C:=animate(plot, [[4*cos(t),4*sin(t), t=0..a], color=blue, thickness=3], a=0..2*Pi):


In Example 1 all three animation executed simultaneously:

display([A, B, C], view=[-4..4,-4..4]);



In Example 2, the same animation performed sequentially. Note that the previous animation disappears completely when the next one begins to execute:

display([A, B, C], insequence);



Below we show how to save the last frame of every previous animation into subsequent animations:

display([A, display(op([1,-1,1],A),B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence);



Using this technique, we can anyhow combine the original animations. For example, in the following example at firstly animations   and  B  are executed simultaneously, afterwards C is executed:

display([display(A, B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence);



The last example in 3D I have taken from here:

A:=animate(plot3d,[[2*cos(phi),2*sin(phi),z], z =0..a, phi=0..2*Pi, style=surface, color=red], a=0..5):
B:=animate(plot3d,[[(2+6/5*(z-5))*cos(phi), (2+6/5*(z-5))*sin(phi),z], z=5..a, phi=0..2*Pi, style=surface, color=blue], a=5..10):
C:=animate(plot3d,[[8*cos(phi),8*sin(phi),z], z =10..a, phi=0..2*Pi, style=surface, color=green], a=10..20):
display([A, display(op([1,-1,1],A),B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence, scaling=constrained, axes=normal);


I am pleased to announce that we have just released a significant update to Maple T.A. 2016, our online assessment system.

Maple T.A. 2016.1 includes a wide range of features and improvements that have been requested by customers, including new options for questions and assignments, improved content management, and enhanced integration with course management systems. It also includes a substantial number of small enhancements and corrections across all areas of the product, providing improved responsiveness, more efficient load handling, and smoother workflow for instructors and students.

For more information, visit What’s New in Maple T.A.

Jonny Zivku
Product Manager, Online Education Products

HI and other watchers,

Please enjoy the attaced files about combinatorics.
You may already know what '4 choose 3' is.


Hopefully this can be useful to the casual mathematical observer.




Graphical Programming with MapleSim in Vector Mechanics to Structures 2D

At the present time before constructing or starting to develop a mechanical structures project it is necessary to model it using graphic programming; In this opportunity and used MapleSim as a computational tool belonging to the company Maplesoft. The modern approach to modeling and simulation makes the fabrication of complex designs easy to solve. We will cover some examples taken from the engineering being implemented in Maplesim with insertion of physical objects; To be seen in real time through video output; Then integrates with Maple to analyze the equations and data through the static and dynamic behavior of the fabricated. Solved methods of physical block components include functionality for many domains: rotational and translational mechanics, multi-body dynamics, logic, and structural blocks; With techniques like: Drag-and-Drop Physical Modeling Environment and Create Custom Components Directly From Their Equations, thus the systems that would take hours or days to build from equations; In principle they can be created in a fraction of time using MapleSim, so it can incorporate significantly more complex graphical algorithms. In MapleSim, I use the revolutionary multibody technology that perfectly combines advanced multi-domain modeling tools to provide all the functionality you need in one environment.


Lenin Araujo Castillo

Ambassador Maple - Perú



Everything is simple, until you go underwater – This is what the University of Waterloo Submarine Racing team, or in short ‘WatSub’ coined as their motto. Never mind learning to scuba dive, and dealing with such things as rust, this newly formed team would have to compete against university teams with a decade or more of experience.

But that did not deter the team, and they started work on Ontario’s first submarine racing project. The team approached Maplesoft to be a sponsor and we are proud to have supported this ingenious venture. The team has used Maplesoft technology in the design and testing of the submarine.

“Maple has been our go-to calculations and analysis tool throughout the development of Amy (2015-2016 season), and we will continue using it throughout the development of Bolt (2016-2017 season),” said Gonzalo Espinoza Graham, President of the WatSub Team. “Its familiar interface and computing environment allowed us to set design benchmark targets from early on the design process and follow through with them on the later stage.”

What started as an engineering project in December 2014, becoming officially the first submarine racing team in Ontario. The team soon grew to over 130 general members and a tight core-team, who were eager to tackle new challenges.  The team resides inside the Sedra Student Design Centre, University of Waterloo’s state of the art facility that houses over 25 student teams, the largest of its kind in North America.  

WatSub made its first appearance on the European International Submarine Races (eISR) back in July 2016, with its 1st submarine ‘Amy’, where a single scuba diver piloted the submarine and propelled it through an unforgiving winding course marked by obstacles and turns 10 meters underwater. The team has since then participated in other competitions and is constantly improving the design and performance of the submarine, learning from each competition they participate in.  Next year Amy will participate in the 14th edition of the eISR international competition. “I think the greatest thing we learned is never to give up,” said Ana Krstanovic, a third-year political science student who manages communications for the team. “We’re more motivated now than ever.”


Ojaswi Tagore, Gonzalo Espinoza Graham, and Janna Henzl represented WatSub at the European International Submarine Race in Gosport, UK.


Another example of an innovative project that Maplesoft supported in 2016 is Waterloop: The Canadian SpaceX Hyperloop Competition Team, Canada's only SpaceX Hyperloop Pod Competition team. This project, which could change the way we travel in the future, is driven by a group of dedicated University of Waterloo students who have taken on the challenge to design and build a functional prototype Hyperloop pod. They will test it on a one-mile test track in Hawthorne, California in January 2017, pitting it against 22 of the 1200+ teams who originally entered the competition.

The Hyperloop is a conceptual next generation high-speed transit system that will take commuters between cities at speeds over 1,000 km/h. The technology will differ from previous rail transit by having pods ride on a cushion of air in a reduced pressure tube in order to reach greater speeds with a smoother ride, and is powered entirely by renewable energy.

 The Hyperloop Pod Competition was launched by Elon Musk, the billionaire engineer and founder of SpaceX and Tesla Motors.  The competition is separated into 3 rounds. The first one was held in late December, where selected teams sent in their initial designs to be reviewed. From there, 180 teams were chosen to compete at Texas A&M University. Each team set up a booth and a panel of judges critiqued them and chose 31 teams to move onto the final, build and test stage.

Waterloop Goose I

Waterloop Goose X

The GOOSE I is Waterloop’s half-scale, functional prototype vehicle pod, which will be the one in the competition.  The GOOSE X pod is a conceptual full size Hyperloop vehicle inspired by the prototype they are building. The full size pod will have a capacity of 26 passengers per pod.

"Our prototype has been designed to be as simple and economical as possible, while still performing all necessary functions for the full size Hyperloop. If it is successful, it has the potential to revolutionize the transit industry in the same manner the train and airplane has before it," said Montgomery de Luna, architectural design lead for Waterloop. “We would like to thank Maplesoft for their generous support.  Without sponsors like Maplesoft supporting our vision and encouraging innovative student projects, we wouldn’t be able to achieve our goal.”

Revolutionizing the transportation industry isn’t easy and is at times frustrating and time consuming for these teams, but having the best tools and resources will ensure that the teams have a good chance at excelling in competitions and creating innovative models that could change our future.

The Joint Mathematics Meetings are taking place this week (January 4 – 7) in Atlanta, Georgia, U.S.A. This will be the 100th annual winter meeting of the Mathematical Association of America (MAA) and the 123nd annual meeting of the American Mathematical Society (AMS).

Maplesoft will be exhibiting at booth #118 as well as in the networking area. Please stop by our booth or the networking area to chat with me and other members of the Maplesoft team, as well as to pick up some free Maplesoft swag or win some prizes.

There are also several interesting Maple-related talks and events happening this week:


Teaching Cryptology to Increase Interest in Mathematics for Students Majoring in Non-Technical Disciplines and High School Students

Wednesday, January 4, 0820, L401 & L402, Lobby Level, Marriott Marquis

Neil Sigmon, Radford University


Enigma: A Combinatorial Analysis and Maple Simulator

Wednesday, January 4, 0900, L401 & L402, Lobby Level, Marriott Marquis

Rick Klima, Appalachian State University


MYMathApps Calculus - Building on Maplets for Calculus

Thursday, January 5, 0800, Courtland, Conference Level, Hyatt Regency

Philip B. Yasskin, Texas A&M University 
Douglas B. Meade, University of South Carolina 
Andrew Crenwelge, Texas A&M University


Maple Software Technology as a Stimulant Tool for Dynamic Interactive Calculus Teaching and Learning

Thursday, January 5, 1000, Courtland, Conference Level, Hyatt Regency

Lina Wu, Borough of Manhattan Community College-The City University of New York 


Collaborative Research: Maplets for Calculus

Thursday, January 5, 1400, Marquis Ballroom, Marquis Level, Marriott Marquis

Philip Yasskin, Texas A&M University 
Douglas Meade, U of South Carolina


Digital Graphic Calculus Art Design in Maple Software

Thursday, January 5, 1420, International 7, International Level, Marriott Marquis

Lina Wu, Borough of Manhattan Community College-The City University of New York 


Maplesoft will also be hosting a catered reception and brief presentation on Teaching STEM Online: Challenges and Solutions, Thursday January 5th, from 6:00pm – 7:30pm, at the Hyatt Regency, Hanover AB, on the exhibitor level. Please RSVP at or at Maplesoft booth #118.


If you are attending the Joint Math meetings this week and plan on presenting anything on Maple, please feel free to let me know and I'll update this list accordingly.

See you in Atlanta!


Maple Product Manager



The code for the animation:

A:=plot(L, color=brown, thickness=10):
B:=plot([op(L1),op(map(t->[-t[1],t[2]],ListTools:-Reverse(L1)))], color="Green", thickness=10):
C:=plottools:-polygon([op(L1),op(map(t->[-t[1],t[2]],ListTools:-Reverse(L1)))], color=green):
Tree:=plots:-display([A, B, C], scaling=constrained, axes=none):
T:=[[-3.2,-2, Happy, color=blue, font=[times,bold,30]], [0,-2,New, color=blue, font=[times,bold,30]], [2.5,-2,Year, color=blue, font=[times,bold,30]], [-5,-3.5, "&", color=yellow, font=[times,bold,30]],[-2.5,-3.5, Merry, color=red, font=[times,bold,30]], [2.3,-3.5, Christmas!, color=red, font=[times,bold,30]], [0,-5, "2017", color=cyan, font=[times,bold,36]]$5]:
F:=k->plottools:-homothety(Tree, k, [0,5]):
A:=plots:-animate(plots:-display, ['F'(k)], k=0..1, frames=60, paraminfo=false):
B:=plots:-animate(plots:-textplot,[T[1..round(i)]], i=0..nops(T), frames=60, paraminfo=false):
plots:-display(A, B, size=[500,550], scaling=constrained);



Ian Thompson has written a new book, Understanding Maple.

I've been browsing through the book and am quite pleased with what I've read so far. As a small format paperback of just over 200 pages it packs in a considerable amount of useful information aimed at the new Maple user. It says, "At the time of writing the current version is Maple 2016."

The general scope and approach of the book is explained in its introduction, which can currently be previewed from the book's page on (Click on the image of the book's cover, to "Look inside", and then select "First Pages" in the "Book sections" tab in the left-panel.)

While not intended as a substitute for the Maple manuals (which, together, are naturally larger and more comprehensive) the book describes some of the big landscape of Maple, which I expect to help the new user. But it also explains how Maple is working at a lower level. Here are two phrases that stuck out: "This book takes a command driven, or programmatic, approach to Maple, with the focus on the language rather than the interface", followed closely by, "...the simple building blocks that make up the Maple language can be assembled to solve complex problems in an efficient way."




1 2 3 4 5 6 7 Last Page 1 of 35