Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

Please I need Correction on this code particularly if I can make do without the declaration of vector in the third subroutine . The idea is to get maximum error. The code has 3 subroutine. The problem I think is in the third subroutine (Display of results).

Thank you in anticipation of positive response.

# First Declaration of the problem

restart:
Digits:=30:
interface(rtablesize=infinity):

f1:=proc(n)
    y2[n]:
end proc:
f2:=proc(n)
    -y1[n]+0.001*cos(t[n]):
end proc:
f3:=proc(n)
    y4[n]:
end proc:
f4:=proc(n)
    -y3[n]+0.001*sin(t[n]):
end proc:
F1:=proc(n)
    f2(n):
end proc:
F2:=proc(n)
    -(f1(n))-0.001*sin(t[n]):
end proc:
F3:=proc(n)
    f4(n):
end proc:
F4:=proc(n)
    -f3(n)+0.001*cos(t[n]):
end proc:


# Declaration of the Numerical methods

e1:=y1[n+2] = (7/23)*y1[n]+(16/23)*y1[n+1]+(12/23)*f1(n+2)*h+(16/23)*f1(n+1)*h-(2/23)*F1(n+2)*h^2+(2/23)*h*f1(n)+((24/3703)*y1[n]-(24/3703)*y1[n+1]+(48/18515)*f1(n+2)*h+(8/55545)*f1(n+1)*h-(116/55545)*F1(n+2)*h^2+(208/55545)*h*f1(n))*u^2+((901/2980915)*y1[n]-(901/2980915)*y1[n+1]+(7109/89427450)*f1(n+2)*h+(923/14904575)*f1(n+1)*h-(6241/89427450)*F1(n+2)*h^2+(14383/89427450)*h*f1(n))*u^4+((1979723/158376013950)*y1[n]-(1979723/158376013950)*y1[n+1]+(6364571/2375640209250)*f1(n+2)*h+(728327/215967291750)*f1(n+1)*h-(11785633/4751280418500)*F1(n+2)*h^2+(5106559/791880069750)*h*f1(n))*u^6+((6488435581/13259239887894000)*y1[n]-(6488435581/13259239887894000)*y1[n+1]+(8693517709/91794737685420000)*f1(n+2)*h+(260601208141/1789997384865690000)*f1(n+1)*h-(323357994149/3579994769731380000)*F1(n+2)*h^2+(891627999937/3579994769731380000)*h*f1(n))*u^8+((25090513463/1343541160668420000)*y1[n]-(25090513463/1343541160668420000)*y1[n+1]+(190450718149/55421072877572325000)*f1(n+2)*h+(47563947061/8210529315195900000)*f1(n+1)*h-(1475729910283/443368583020578600000)*F1(n+2)*h^2+(261738159769/27710536438786162500)*h*f1(n))*u^10+((244426606265778733/347060946154014557665200000)*y1[n]-(244426606265778733/347060946154014557665200000)*y1[n+1]+(1316372988977975777/10411828384620436729956000000)*f1(n+2)*h+(105391490263288387/473264926573656214998000000)*f1(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F1(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f1(n))*u^12:

e2:=h^2*F1(n+1) = (60/23)*y1[n]-(60/23)*y1[n+1]+(25/46)*f1(n+2)*h+(32/23)*f1(n+1)*h-(4/23)*F1(n+2)*h^2+(31/46)*h*f1(n)+((209/3703)*y1[n]-(209/3703)*y1[n+1]+(1313/222180)*f1(n+2)*h+(1304/55545)*f1(n+1)*h-(131/18515)*F1(n+2)*h^2+(6011/222180)*h*f1(n))*u^2+((77491/35770980)*y1[n]-(77491/35770980)*y1[n+1]+(574843/2146258800)*f1(n+2)*h+(113536/134141175)*f1(n+1)*h-(53461/178854900)*F1(n+2)*h^2+(2258041/2146258800)*h*f1(n))*u^4+((151508243/1900512167400)*y1[n]-(151508243/1900512167400)*y1[n+1]+(1290306599/114030730044000)*f1(n+2)*h+(18919693/647901875250)*f1(n+1)*h-(113769323/9502560837000)*F1(n+2)*h^2+(4470322013/114030730044000)*h*f1(n))*u^6+((42120775181/14464625332248000)*y1[n]-(42120775181/14464625332248000)*y1[n+1]+(332746636891/734357901483360000)*f1(n+2)*h+(302396120633/298332897477615000)*f1(n+1)*h-(369019384141/795554393273640000)*F1(n+2)*h^2+(13797329479621/9546652719283680000)*h*f1(n))*u^8+((18953368786273/177347433208231440000)*y1[n]-(18953368786273/177347433208231440000)*y1[n+1]+(2430202319484337/138330997902420523200000)*f1(n+2)*h+(310803544671199/8645687368901282700000)*f1(n+1)*h-(203453960588449/11527583158535043600000)*F1(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f1(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y1[n]-(16436168060905785763/4164731353848174691982400000)*y1[n+1]+(167160345356705269819/249883881230890481518944000000)*f1(n+2)*h+(461636091223370027/354948694930242161248500000)*f1(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F1(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f1(n))*u^12:


e3:=y2[n+2] = (7/23)*y2[n]+(16/23)*y2[n+1]+(12/23)*f2(n+2)*h+(16/23)*f2(n+1)*h-(2/23)*F2(n+2)*h^2+(2/23)*h*f2(n)+((24/3703)*y2[n]-(24/3703)*y2[n+1]+(48/18515)*f2(n+2)*h+(8/55545)*f2(n+1)*h-(116/55545)*F2(n+2)*h^2+(208/55545)*h*f2(n))*u^2+((901/2980915)*y2[n]-(901/2980915)*y2[n+1]+(7109/89427450)*f2(n+2)*h+(923/14904575)*f2(n+1)*h-(6241/89427450)*F2(n+2)*h^2+(14383/89427450)*h*f2(n))*u^4+((1979723/158376013950)*y2[n]-(1979723/158376013950)*y2[n+1]+(6364571/2375640209250)*f2(n+2)*h+(728327/215967291750)*f2(n+1)*h-(11785633/4751280418500)*F2(n+2)*h^2+(5106559/791880069750)*h*f2(n))*u^6+((6488435581/13259239887894000)*y2[n]-(6488435581/13259239887894000)*y2[n+1]+(8693517709/91794737685420000)*f2(n+2)*h+(260601208141/1789997384865690000)*f2(n+1)*h-(323357994149/3579994769731380000)*F2(n+2)*h^2+(891627999937/3579994769731380000)*h*f2(n))*u^8+((25090513463/1343541160668420000)*y2[n]-(25090513463/1343541160668420000)*y2[n+1]+(190450718149/55421072877572325000)*f2(n+2)*h+(47563947061/8210529315195900000)*f2(n+1)*h-(1475729910283/443368583020578600000)*F2(n+2)*h^2+(261738159769/27710536438786162500)*h*f2(n))*u^10+((244426606265778733/347060946154014557665200000)*y2[n]-(244426606265778733/347060946154014557665200000)*y2[n+1]+(1316372988977975777/10411828384620436729956000000)*f2(n+2)*h+(105391490263288387/473264926573656214998000000)*f2(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F2(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f2(n))*u^12:

e4:=h^2*F2(n+1) = (60/23)*y2[n]-(60/23)*y2[n+1]+(25/46)*f2(n+2)*h+(32/23)*f2(n+1)*h-(4/23)*F2(n+2)*h^2+(31/46)*h*f2(n)+((209/3703)*y2[n]-(209/3703)*y2[n+1]+(1313/222180)*f2(n+2)*h+(1304/55545)*f2(n+1)*h-(131/18515)*F2(n+2)*h^2+(6011/222180)*h*f2(n))*u^2+((77491/35770980)*y2[n]-(77491/35770980)*y2[n+1]+(574843/2146258800)*f2(n+2)*h+(113536/134141175)*f2(n+1)*h-(53461/178854900)*F2(n+2)*h^2+(2258041/2146258800)*h*f2(n))*u^4+((151508243/1900512167400)*y2[n]-(151508243/1900512167400)*y2[n+1]+(1290306599/114030730044000)*f2(n+2)*h+(18919693/647901875250)*f2(n+1)*h-(113769323/9502560837000)*F2(n+2)*h^2+(4470322013/114030730044000)*h*f2(n))*u^6+((42120775181/14464625332248000)*y2[n]-(42120775181/14464625332248000)*y2[n+1]+(332746636891/734357901483360000)*f2(n+2)*h+(302396120633/298332897477615000)*f2(n+1)*h-(369019384141/795554393273640000)*F2(n+2)*h^2+(13797329479621/9546652719283680000)*h*f2(n))*u^8+((18953368786273/177347433208231440000)*y2[n]-(18953368786273/177347433208231440000)*y2[n+1]+(2430202319484337/138330997902420523200000)*f2(n+2)*h+(310803544671199/8645687368901282700000)*f2(n+1)*h-(203453960588449/11527583158535043600000)*F2(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f2(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y2[n]-(16436168060905785763/4164731353848174691982400000)*y2[n+1]+(167160345356705269819/249883881230890481518944000000)*f2(n+2)*h+(461636091223370027/354948694930242161248500000)*f2(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F2(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f2(n))*u^12:

e5:=y3[n+2] = (7/23)*y3[n]+(16/23)*y3[n+1]+(12/23)*f3(n+2)*h+(16/23)*f3(n+1)*h-(2/23)*F3(n+2)*h^2+(2/23)*h*f3(n)+((24/3703)*y3[n]-(24/3703)*y3[n+1]+(48/18515)*f3(n+2)*h+(8/55545)*f3(n+1)*h-(116/55545)*F3(n+2)*h^2+(208/55545)*h*f3(n))*u^2+((901/2980915)*y3[n]-(901/2980915)*y3[n+1]+(7109/89427450)*f3(n+2)*h+(923/14904575)*f3(n+1)*h-(6241/89427450)*F3(n+2)*h^2+(14383/89427450)*h*f3(n))*u^4+((1979723/158376013950)*y3[n]-(1979723/158376013950)*y3[n+1]+(6364571/2375640209250)*f3(n+2)*h+(728327/215967291750)*f3(n+1)*h-(11785633/4751280418500)*F3(n+2)*h^2+(5106559/791880069750)*h*f3(n))*u^6+((6488435581/13259239887894000)*y3[n]-(6488435581/13259239887894000)*y3[n+1]+(8693517709/91794737685420000)*f3(n+2)*h+(260601208141/1789997384865690000)*f3(n+1)*h-(323357994149/3579994769731380000)*F3(n+2)*h^2+(891627999937/3579994769731380000)*h*f3(n))*u^8+((25090513463/1343541160668420000)*y3[n]-(25090513463/1343541160668420000)*y3[n+1]+(190450718149/55421072877572325000)*f3(n+2)*h+(47563947061/8210529315195900000)*f3(n+1)*h-(1475729910283/443368583020578600000)*F3(n+2)*h^2+(261738159769/27710536438786162500)*h*f3(n))*u^10+((244426606265778733/347060946154014557665200000)*y3[n]-(244426606265778733/347060946154014557665200000)*y3[n+1]+(1316372988977975777/10411828384620436729956000000)*f3(n+2)*h+(105391490263288387/473264926573656214998000000)*f3(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F3(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f3(n))*u^12:
e6:=h^2*F3(n+1) = (60/23)*y3[n]-(60/23)*y3[n+1]+(25/46)*f3(n+2)*h+(32/23)*f3(n+1)*h-(4/23)*F3(n+2)*h^2+(31/46)*h*f3(n)+((209/3703)*y3[n]-(209/3703)*y3[n+1]+(1313/222180)*f3(n+2)*h+(1304/55545)*f3(n+1)*h-(131/18515)*F3(n+2)*h^2+(6011/222180)*h*f3(n))*u^2+((77491/35770980)*y3[n]-(77491/35770980)*y3[n+1]+(574843/2146258800)*f3(n+2)*h+(113536/134141175)*f3(n+1)*h-(53461/178854900)*F3(n+2)*h^2+(2258041/2146258800)*h*f3(n))*u^4+((151508243/1900512167400)*y3[n]-(151508243/1900512167400)*y3[n+1]+(1290306599/114030730044000)*f3(n+2)*h+(18919693/647901875250)*f3(n+1)*h-(113769323/9502560837000)*F3(n+2)*h^2+(4470322013/114030730044000)*h*f3(n))*u^6+((42120775181/14464625332248000)*y3[n]-(42120775181/14464625332248000)*y3[n+1]+(332746636891/734357901483360000)*f3(n+2)*h+(302396120633/298332897477615000)*f3(n+1)*h-(369019384141/795554393273640000)*F3(n+2)*h^2+(13797329479621/9546652719283680000)*h*f3(n))*u^8+((18953368786273/177347433208231440000)*y3[n]-(18953368786273/177347433208231440000)*y3[n+1]+(2430202319484337/138330997902420523200000)*f3(n+2)*h+(310803544671199/8645687368901282700000)*f3(n+1)*h-(203453960588449/11527583158535043600000)*F3(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f3(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y3[n]-(16436168060905785763/4164731353848174691982400000)*y3[n+1]+(167160345356705269819/249883881230890481518944000000)*f3(n+2)*h+(461636091223370027/354948694930242161248500000)*f3(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F3(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f3(n))*u^12:

e7:=y4[n+2] = (7/23)*y4[n]+(16/23)*y4[n+1]+(12/23)*f4(n+2)*h+(16/23)*f4(n+1)*h-(2/23)*F4(n+2)*h^2+(2/23)*h*f4(n)+((24/3703)*y4[n]-(24/3703)*y4[n+1]+(48/18515)*f4(n+2)*h+(8/55545)*f4(n+1)*h-(116/55545)*F4(n+2)*h^2+(208/55545)*h*f4(n))*u^2+((901/2980915)*y4[n]-(901/2980915)*y4[n+1]+(7109/89427450)*f4(n+2)*h+(923/14904575)*f4(n+1)*h-(6241/89427450)*F4(n+2)*h^2+(14383/89427450)*h*f4(n))*u^4+((1979723/158376013950)*y4[n]-(1979723/158376013950)*y4[n+1]+(6364571/2375640209250)*f4(n+2)*h+(728327/215967291750)*f4(n+1)*h-(11785633/4751280418500)*F4(n+2)*h^2+(5106559/791880069750)*h*f4(n))*u^6+((6488435581/13259239887894000)*y4[n]-(6488435581/13259239887894000)*y4[n+1]+(8693517709/91794737685420000)*f4(n+2)*h+(260601208141/1789997384865690000)*f4(n+1)*h-(323357994149/3579994769731380000)*F4(n+2)*h^2+(891627999937/3579994769731380000)*h*f4(n))*u^8+((25090513463/1343541160668420000)*y4[n]-(25090513463/1343541160668420000)*y4[n+1]+(190450718149/55421072877572325000)*f4(n+2)*h+(47563947061/8210529315195900000)*f4(n+1)*h-(1475729910283/443368583020578600000)*F4(n+2)*h^2+(261738159769/27710536438786162500)*h*f4(n))*u^10+((244426606265778733/347060946154014557665200000)*y4[n]-(244426606265778733/347060946154014557665200000)*y4[n+1]+(1316372988977975777/10411828384620436729956000000)*f4(n+2)*h+(105391490263288387/473264926573656214998000000)*f4(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F4(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f4(n))*u^12:

e8:=h^2*F4(n+1) = (60/23)*y4[n]-(60/23)*y4[n+1]+(25/46)*f4(n+2)*h+(32/23)*f4(n+1)*h-(4/23)*F4(n+2)*h^2+(31/46)*h*f4(n)+((209/3703)*y4[n]-(209/3703)*y4[n+1]+(1313/222180)*f4(n+2)*h+(1304/55545)*f4(n+1)*h-(131/18515)*F4(n+2)*h^2+(6011/222180)*h*f4(n))*u^2+((77491/35770980)*y4[n]-(77491/35770980)*y4[n+1]+(574843/2146258800)*f4(n+2)*h+(113536/134141175)*f4(n+1)*h-(53461/178854900)*F4(n+2)*h^2+(2258041/2146258800)*h*f4(n))*u^4+((151508243/1900512167400)*y4[n]-(151508243/1900512167400)*y4[n+1]+(1290306599/114030730044000)*f4(n+2)*h+(18919693/647901875250)*f4(n+1)*h-(113769323/9502560837000)*F4(n+2)*h^2+(4470322013/114030730044000)*h*f4(n))*u^6+((42120775181/14464625332248000)*y4[n]-(42120775181/14464625332248000)*y4[n+1]+(332746636891/734357901483360000)*f4(n+2)*h+(302396120633/298332897477615000)*f4(n+1)*h-(369019384141/795554393273640000)*F4(n+2)*h^2+(13797329479621/9546652719283680000)*h*f4(n))*u^8+((18953368786273/177347433208231440000)*y4[n]-(18953368786273/177347433208231440000)*y4[n+1]+(2430202319484337/138330997902420523200000)*f4(n+2)*h+(310803544671199/8645687368901282700000)*f4(n+1)*h-(203453960588449/11527583158535043600000)*F4(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f4(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y4[n]-(16436168060905785763/4164731353848174691982400000)*y4[n+1]+(167160345356705269819/249883881230890481518944000000)*f4(n+2)*h+(461636091223370027/354948694930242161248500000)*f4(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F4(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f4(n))*u^12:

# Display of the solutions


h:=evalf(Pi/6):

omega:=1.0:
u:=omega*h:
N:=solve(h*p = 12*Pi/6, p):
n:=0:

exy1:= [seq](eval(cos(i)+0.0005*i*sin(i)), i=h..N,h):
exy2:= [seq](eval(-0.9995*sin(i)+0.0005), i=h..N,h):
exy3:= [seq](eval(sin(i)-0.0005*i*cos(i)), i=h..N,h):
exy4:= [seq](eval(0.9995*sin(i)+0.0005*i*sin(i)), i=h..N,h):

iny1:=1:
iny2:=0:
iny3:=0:
iny4:=0.9995:

err1 := Vector(N):
err2 := Vector(N):
c:=1:
inx:=0:
vars := y1[n+1],y1[n+2],y2[n+1],y2[n+2],y3[n+1],y3[n+2],y4[n+1],y4[n+2]:
for j from 0 to 2 do
    x[j]:=inx+j*h:
end do:
printf("%4s%9s%9s%9s%9s%9s%9s%10s%10s%9s%9s%9s%10s\n",
    "h","numy1","numy2","numy3","numy4",
    "exy1","exy2","exy3","exy4",
    "erry1","erry2","erry3","erry4");
    
st := time():
for k from 1 to N/2 do
    param1:=y1[n]=iny1,y2[n]=iny2,y3[n]=iny3,y4[n]=iny4:
    param2:=t[n]=x[0],t[n+1]=x[1],t[n+2]=x[2]:
    
    res:=eval(<vars>, fsolve(eval({e||(1..8)},[param1,param2]),{vars})):
    
    for i from 1 to 2 do
        printf("%5.2f%9.3f%9.3f%9.3f%9.3f %8.5f%10.5f%10.5f%10.5f %8.2g%9.3g%9.3g%8.3g\n",
        h*c,res[i],res[i+2],res[i+4],res[i+6],
        exy1[c],exy2[c],exy3[c],exy4[c],
        abs(res[i]-exy1[c]),abs(res[i+2]-exy2[c]),abs(res[i+4]-exy3[c]),abs(res[i+6]-exy4[c])):

        err1[c] := abs(evalf(res[i]-exy1)):
        err2[c] := abs(evalf(res[i+4]-exy3)):
        c:=c+1:
    end do:
    iny1:=res[2]:
    iny2:=res[4]:
    iny3:=res[6]:
    iny4:=res[8]:
    inx:=x[2]:
    for j from 0 to 2 do
        x[j]:=inx+j*h:
    end do:
end do:
v:=time() - st;
printf("Maximum error is %.13g", max(err1));
printf("Maximum error is %.13g", max(err2));

 

Hello,
I try to visualize this formula in a 3D graphic.
However, I get again and again this error message displayed and unfortunately knows no more solution.
I am a total beginner with Maple, I hope here can help me.

plot3d(100*(0,15+0,035*x)+100*(0,15+0,035*9), 100*(35*9))+0,05*(100-(100*(0,15+0,035*x)))*(0,15+9*y), x = 2 .. 9, y = 0, 1 .. 0, 45, axes = boxed);

Error, (in plot3d) unexpected options: [5*(100+(0, -1500, -3500*x))*(0, 15+9*y), x = 2 .. 9, y = 0, 1 .. 0, 45]

 

Hi everyone

I am stuck in my code. I have a multivariate polynomial and I am trying to define an order on the variables such that I can write my polynomials in a desired normal form. I tried with the Groebner package but that's quite different from what I want.

I want to define the order on the variables as u[i]=v[i] and u[i]<u[i+1].

Lets say my polynomial is f then,

input f= u[1]^2+u[2]+v[3]

output f = v[3]+u[2]+u[1]^2.

If there is a clash between u and v then, either of them can come first, for example,

input f= u[1]^2+u[2]+v[3]+u[3]^2

 output f=v[3]+u[3]^2+u[2]+u[1]^2 or f=u[3]^2+v[3]+u[2]+u[1]^2

I hope my question is clear. Thank you for helping me out. Your time is much appreciated :)

Good day!

As part of an exercise I've calculated the length of a hypotrochoid numerically. To check my result I repeated the calculation in Maple, but received a different result. When double checking using WolframAlpha I got the same result as with my numerics. Maybe someone of you can tell me where I made a mistake.

Thanks in advance.
Sören


Link to WolframAlpha calculation: http://www.wolframalpha.com/input/?i=x%28t%29+%3D+%281-0.6%29+cos%28t%29+%2B+0.8+cos+%28+%281-0.6%29%2F0.6+*+t%29,+y%28t%29+%3D+%281-0.6%29+sin%28t%29+-+0.8+sin+%28+%281-0.6%29%2F0.6+*+t%29+from+t%3D0+to+6*pi

restart; with(VectorCalculus)

R := 1;

1

 

.6

 

.8

(1)

x := proc (t) options operator, arrow; (R-r)*cos(t)+d*cos((R-r)*t/r) end proc:

y := proc (t) options operator, arrow; (R-r)*sin(t)-d*sin((R-r)*t/r) end proc:

plot([x(t), y(t), t = 0 .. VectorCalculus:-`*`(6, Pi)]);

 

ArcLength(`<,>`(x(t), y(t)), t = 0 .. VectorCalculus:-`*`(6, Pi))

12.67823876+0.*I

(2)

diff(x(t), t);

-.4*sin(t)-.5333333334*sin(.6666666668*t)

(3)

diff(y(t), t)

.4*cos(t)-.5333333334*cos(.6666666668*t)

(4)

sqrt(VectorCalculus:-`+`((-.4*sin(t)-.5333333334*sin(.6666666668*t))^2, (.4*cos(t)-.5333333334*cos(.6666666668*t))^2))

((-.4*sin(t)-.5333333334*sin(.6666666668*t))^2+(.4*cos(t)-.5333333334*cos(.6666666668*t))^2)^(1/2)

(5)

simplify(((-.4*sin(t)-.5333333334*sin(.6666666668*t))^2+(.4*cos(t)-.5333333334*cos(.6666666668*t))^2)^(1/2))

(.4444444445+.4266666668*sin(t)*sin(.6666666668*t)-.4266666668*cos(t)*cos(.6666666668*t))^(1/2)

(6)

int(((-.4*sin(t)-.5333333334*sin(.6666666668*t))^2+(.4*cos(t)-.5333333334*cos(.6666666668*t))^2)^(1/2), t = 0 .. VectorCalculus:-`*`(6, Pi))

12.67823876+0.*I

(7)

int(((-.4*sin(t)-.5333333334*sin(.6666666668*t))^2+(.4*cos(t)-.5333333334*cos(.6666666668*t))^2)^(1/2), t)

-1.120000000*((0.2133333334e20*cos(.8333333334*t)^2-0.2177777778e20)*(cos(.8333333334*t)^2-1.))^(1/2)*(-1.*cos(.8333333334*t)^2+1.)^(1/2)*EllipticE(cos(.8333333334*t), .9897433186)/((0.2133333334e20*cos(.8333333334*t)^4-0.4311111112e20*cos(.8333333334*t)^2+0.2177777778e20)^(1/2)*sin(.8333333334*t))

(8)

evalf(VectorCalculus:-`+`(limit(-1.120000000*((0.2133333334e20*cos(.8333333334*t)^2-0.2177777778e20)*(cos(.8333333334*t)^2-1.))^(1/2)*(-1.*cos(.8333333334*t)^2+1.)^(1/2)*EllipticE(cos(.8333333334*t), .9897433186)/((0.2133333334e20*cos(.8333333334*t)^4-0.4311111112e20*cos(.8333333334*t)^2+0.2177777778e20)^(1/2)*sin(.8333333334*t)), t = VectorCalculus:-`*`(6, Pi)), VectorCalculus:-`-`(limit(-1.120000000*((0.2133333334e20*cos(.8333333334*t)^2-0.2177777778e20)*(cos(.8333333334*t)^2-1.))^(1/2)*(-1.*cos(.8333333334*t)^2+1.)^(1/2)*EllipticE(cos(.8333333334*t), .9897433186)/((0.2133333334e20*cos(.8333333334*t)^4-0.4311111112e20*cos(.8333333334*t)^2+0.2177777778e20)^(1/2)*sin(.8333333334*t)), t = 0))))

Float(undefined)

(9)

simplify(diff(-1.120000000*((0.2133333334e20*cos(.8333333334*t)^2-0.2177777778e20)*(cos(.8333333334*t)^2-1.))^(1/2)*(-1.*cos(.8333333334*t)^2+1.)^(1/2)*EllipticE(cos(.8333333334*t), .9897433186)/((0.2133333334e20*cos(.8333333334*t)^4-0.4311111112e20*cos(.8333333334*t)^2+0.2177777778e20)^(1/2)*sin(.8333333334*t)), t))

.9333333334*(1.-.9795918367*cos(.8333333334*t)^2)^(1/2)

(10)

``

Download hypotrochoid.mw

mar.mw
hi..how i can dsolve these differential equations? omega is unknown and fir solving i add an extra boundary condition, but the error "unable to store %1 when datatype=%2" is appear!!!

how i can remove this error?

thanks

dsys3 := {-6*(diff(f5(x), x, x))+2*f3(x)-(22/3)*f5(x)*omega^2-(2/3)*f4(x)*omega^2+(1/3)*(diff(f1(x), x))*omega^2-(2/3)*(diff(f2(x), x))*omega^2-(14/5)*(diff(f2(x), x, x, x, x, x))+(56/5)*(diff(f5(x), x, x, x, x)), (13/1800)*(diff(f3(x), x, x, x, x, x, x, x, x))+(154/5625)*(diff(f3(x), x, x, x, x, x, x))-(475051/67500)*(diff(f3(x), x, x, x, x))-(2491/4500)*(diff(f1(x), x, x, x, x, x))+(1648/1125)*(diff(f2(x), x, x, x, x, x))-(427/375)*(diff(f1(x), x, x, x))+(24/125)*(diff(f2(x), x, x, x))-(953/375)*(diff(f3(x), x, x))+(28/25)*(diff(f4(x), x, x, x, x)), -6*(diff(f4(x), x, x))-2*f3(x)-(22/3)*f4(x)*omega^2-(2/3)*f5(x)*omega^2+(2/3)*(diff(f1(x), x))*omega^2-(1/3)*(diff(f2(x), x))*omega^2-(44/625)*(diff(f3(x), x, x, x, x, x, x))-(422/75)*(diff(f1(x), x, x, x, x, x))-(28/75)*(diff(f2(x), x, x, x, x, x))+(72/5)*(diff(f4(x), x, x, x, x))+(8/25)*(diff(f3(x), x, x, x, x))-(8/3)*(diff(f2(x), x, x, x))+(8/3)*(diff(f1(x), x, x, x)), (583/30)*(diff(f2(x), x, x, x, x))-2*(diff(f3(x), x))+4*f2(x)-4*f1(x)-(22/3)*f2(x)*omega^2+(2/3)*(diff(f5(x), x))*omega^2-(1/6)*(diff(f1(x), x, x))*omega^2+(1/3)*(diff(f4(x), x))*omega^2+(1/3)*(diff(f2(x), x, x))*omega^2-(2/3)*f1(x)*omega^2+(929/150)*(diff(f1(x), x, x, x, x))+(517/900)*(diff(f3(x), x, x, x, x, x))-(133/75)*(diff(f1(x), x, x, x, x, x, x))-(152/75)*(diff(f2(x), x, x, x, x, x, x))-(9/25)*(diff(f3(x), x, x, x))+(724/45)*(diff(f1(x), x, x))-(724/45)*(diff(f2(x), x, x))-(16/3)*(diff(f4(x), x, x, x))-(14/225)*(diff(f3(x), x, x, x, x, x, x, x)), -(22/3)*f1(x)*omega^2-(2/3)*f2(x)*omega^2-(1/6)*(diff(f2(x), x, x))*omega^2-(1/3)*(diff(f5(x), x))*omega^2-(2/3)*(diff(f4(x), x))*omega^2+(1/3)*(diff(f1(x), x, x))*omega^2-(224/25)*(diff(f1(x), x, x, x, x, x, x))-(12/5)*(diff(f3(x), x, x))-(733/300)*(diff(f3(x), x, x, x))-(1/3)*(diff(f3(x), x, x, x, x))-4*(diff(f2(x), x, x, x))+(24/25)*(diff(f2(x), x, x, x, x))-(133/75)*(diff(f2(x), x, x, x, x, x, x))+(689/900)*(diff(f3(x), x, x, x, x, x))-(6743/31500)*(diff(f3(x), x, x, x, x, x, x, x))+(16/3)*(diff(f4(x), x, x, x))+4*f1(x)-(1036/75)*(diff(f1(x), x, x))-4*(diff(f1(x), x, x, x))+(337/50)*(diff(f1(x), x, x, x, x))-4*f2(x)+(724/45)*(diff(f2(x), x, x))-2*(diff(f3(x), x)), -(14/5)*((D@@3)(f2))(0)+(56/5)*((D@@2)(f5))(0) = 0, -(14/5)*((D@@3)(f2))(1)+(56/5)*((D@@2)(f5))(1) = 0, -(44/625)*((D@@4)(f3))(0)-(8/5)*((D@@3)(f1))(0)-(28/75)*((D@@3)(f2))(0)+(72/5)*((D@@2)(f4))(0)+(8/25)*((D@@2)(f3))(0)-(8/3)*(D(f2))(0)+(8/3)*(D(f1))(0) = 0, (13/1800)*((D@@4)(f3))(0)-(97/4500)*((D@@2)(f3))(0)+(1/9)*(D(f1))(0)-(1/9)*(D(f2))(0)-(31/150)*((D@@2)(f4))(0)+(49/225)*((D@@3)(f1))(0)+(14/225)*((D@@3)(f2))(0) = 0, -(44/625)*((D@@4)(f3))(1)-(8/5)*((D@@3)(f1))(1)-(28/75)*((D@@3)(f2))(1)+(72/5)*((D@@2)(f4))(1)+(8/25)*((D@@2)(f3))(1)-(8/3)*(D(f2))(1)+(8/3)*(D(f1))(1) = 0, (13/1800)*((D@@4)(f3))(1)-(97/4500)*((D@@2)(f3))(1)+(1/9)*(D(f1))(1)-(1/9)*(D(f2))(1)-(31/150)*((D@@2)(f4))(1)+(49/225)*((D@@3)(f1))(1)+(14/225)*((D@@3)(f2))(1) = 0, (109/10)*((D@@2)(f1))(0)+(263/300)*((D@@3)(f3))(0)-(922/75)*((D@@4)(f1))(0)-(133/75)*((D@@4)(f2))(0)+(32/15)*((D@@2)(f2))(0)-(167/75)*(D(f3))(0)+(862/75)*((D@@3)(f4))(0)-(6743/31500)*((D@@5)(f3))(0) = 0, (109/10)*((D@@2)(f1))(1)+(263/300)*((D@@3)(f3))(1)-(922/75)*((D@@4)(f1))(1)-(133/75)*((D@@4)(f2))(1)+(32/15)*((D@@2)(f2))(1)-(167/75)*(D(f3))(1)+(862/75)*((D@@3)(f4))(1)-(6743/31500)*((D@@5)(f3))(1) = 0, -(13/1800)*((D@@5)(f3))(0)-(6/125)*((D@@3)(f3))(0)+(16697/4500)*(D(f3))(0)-(143/300)*((D@@2)(f1))(0)-(373/225)*((D@@2)(f2))(0)+(31/150)*((D@@3)(f4))(0)-(49/225)*((D@@4)(f1))(0)-(14/225)*((D@@4)(f2))(0) = 0, -(13/1800)*((D@@5)(f3))(1)-(6/125)*((D@@3)(f3))(1)+(16697/4500)*(D(f3))(1)-(143/300)*((D@@2)(f1))(1)-(373/225)*((D@@2)(f2))(1)+(31/150)*((D@@3)(f4))(1)-(49/225)*((D@@4)(f1))(1)-(14/225)*((D@@4)(f2))(1) = 0, (189/10)*((D@@2)(f2))(0)+(23/10)*((D@@2)(f1))(0)+(139/300)*((D@@3)(f3))(0)-(133/75)*((D@@4)(f1))(0)-(112/75)*((D@@4)(f2))(0)+(13/75)*(D(f3))(0)+(28/15)*((D@@3)(f4))(0)+(14/5)*((D@@3)(f5))(0)-(14/225)*((D@@5)(f3))(0) = 0, (189/10)*((D@@2)(f2))(1)+(23/10)*((D@@2)(f1))(1)+(139/300)*((D@@3)(f3))(1)-(133/75)*((D@@4)(f1))(1)-(112/75)*((D@@4)(f2))(1)+(13/75)*(D(f3))(1)+(28/15)*((D@@3)(f4))(1)+(14/5)*((D@@3)(f5))(1)-(14/225)*((D@@5)(f3))(1) = 0, -(13/1800)*((D@@8)(f3))(0)-(154/5625)*((D@@6)(f3))(0)+(475051/67500)*((D@@4)(f3))(0)+(2491/4500)*((D@@5)(f1))(0)-(1648/1125)*((D@@5)(f2))(0)+(427/375)*((D@@3)(f1))(0)-(24/125)*((D@@3)(f2))(0)+(953/375)*((D@@2)(f3))(0)-(28/25)*((D@@4)(f4))(0) = 0, -(13/1800)*((D@@8)(f3))(1)-(154/5625)*((D@@6)(f3))(1)+(475051/67500)*((D@@4)(f3))(1)+(2491/4500)*((D@@5)(f1))(1)-(1648/1125)*((D@@5)(f2))(1)+(427/375)*((D@@3)(f1))(1)-(24/125)*((D@@3)(f2))(1)+(953/375)*((D@@2)(f3))(1)-(28/25)*((D@@4)(f4))(1) = 0, (13/1800)*((D@@6)(f3))(0)+(154/5625)*((D@@4)(f3))(0)-(111533/33750)*((D@@2)(f3))(0)-(2491/4500)*((D@@3)(f1))(0)+(1648/1125)*((D@@3)(f2))(0)-(212/375)*(D(f1))(0)+(212/375)*(D(f2))(0)+(152/125)*((D@@2)(f4))(0)-(31/150)*((D@@4)(f4))(0)+(49/225)*((D@@5)(f1))(0)+(14/225)*((D@@5)(f2))(0) = 0, (13/1800)*((D@@6)(f3))(1)+(154/5625)*((D@@4)(f3))(1)-(111533/33750)*((D@@2)(f3))(1)-(2491/4500)*((D@@3)(f1))(1)+(1648/1125)*((D@@3)(f2))(1)-(212/375)*(D(f1))(1)+(212/375)*(D(f2))(1)+(152/125)*((D@@2)(f4))(1)-(31/150)*((D@@4)(f4))(1)+(49/225)*((D@@5)(f1))(1)+(14/225)*((D@@5)(f2))(1) = 0, f1(0) = 0, f1(1) = 0, f2(0) = 0, f2(1) = 0, f4(0) = 0, f4(1) = 0, f5(0) = 0, f5(1) = 0, ((D@@2)(f1))(0) = 0, ((D@@2)(f1))(1) = 0, ((D@@2)(f2))(0) = 0, ((D@@2)(f2))(1) = 0}:

dsys4 := subs(omega^2 = omega2, dsys3):

Typesetting:-mrow(Typesetting:-mo("for", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("bb", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("in", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("extra_bcs", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("do", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("try", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("print", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("bb", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("res", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("bb", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]"), Typesetting:-mo("&coloneq;", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("dsolve", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("dsys4", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("union", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("bb", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("=", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mn(".00000000001", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal", open = "{", close = "}"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("numeric", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("output", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("=", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("listprocedure", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("initmesh", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("=", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mn("3024", font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("abserr", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("=", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mn("1e&minus;5", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(";", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("catch", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("print", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("lasterror", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("end", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("try", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("end", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("do", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("indx", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("&coloneq;", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("indices", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("res", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("nolist", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(";", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mi("nops", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("indx", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mi("res", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("indx", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mn("1", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("Sol", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("&coloneq;", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("seq", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("subs", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("res", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("indx", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("i", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mn("0", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("omega2", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mn("0", font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("i", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("=", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mn("1", font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo("..", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2222222em", rspace = "0.0em"), Typesetting:-mi("nops", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("indx", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]")), font_style_name = "2D Input", mathvariant = "normal")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(";", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.2777778em"))

Error, invalid input: subs received res[indx[1]](0), which is not valid for its 1st argument

 

``

``


 

Download mar.mw

 

Hello again. 3 questions today, a record for me.

I'm looking for a procedure to do this

Combinatorial_explosion.mw

thankyou.

 

 

Salutations.

for L:=[5,0,10,3]

What command do I require to find minimum of L which excludes 0? [ 3]

FindMinimalElement?

Hi all....

I wanted to run the bat file from maple worksheet, if anyone knows please help me.

Thanks

Experts.

In view of the worksheet:

VRP_permute.mw

What I need is
a) a better way to display the Tour_Distances (from 1 to M) and
b) a way to select tour elements where each component is <= to a specified distance (say <=H) and the corresponding tour(s) (from Tour2).
 

My question is: Use the laplace transform to solve the system.

dx/dt + d^2y/dt^2 = 5e^(2t)

dx/dt - x - dy/dt + y = 8e^(2t)

x(0) = 2, y(0) = 1, y'(0) = 1

What I've done in Maple:

with(inttrans);
with(DEtools);
eq5 := (diff(x(t), t)+diff(y(t), t$2) = 5*exp(2*t), t, s);

eq5s := laplace(%, t, s);

eq6 := (diff(x(t), t)-x-(diff(y(t), t))+y = 8*exp(2*t), t, s);

eq6s := laplace(%, t, s);

solve({eq5s, eq6s}, {laplace(x(t), t, s), laplace(y(t), t, s)});

subs({x(0) = 2, y(0) = 1, (D(y))(0) = 1}, %);

eq3 := invlaplace(%, s, t);

How do I simplify?  If you plug it into maple I come up with an answer that has x and y on each side.  I guess I'm just wondering how I can set them equal to each other to solve and get rid of the variable x and y.  I know answer is correct as I've also ran it through ODEtest.  Please help.

However you figure out getting rid of the variables I assume will help me also in solving the next problem:

Use the Laplace Transform to solve the system

dx/dt = 7x - y + 6z

dy/dt = -10x + 4y - 12z

dz/dt = -2x + y - z

x(0) = 5, y(0) = 7, z(0) = 2

I have attempted the second problem much like the first.  Thank you for your time.

Experts,

This may sound like a dumb question, but i'm seeking a procedure to do it better.
 

``

 

with(combinat, setpartition) :
P := [$2..5] :

Tours := setpartition(P);M:=nops(Tours)

[[[5], [2, 3, 4]], [[2], [5], [3, 4]], [[3], [5], [2, 4]], [[4], [5], [2, 3]], [[2], [3], [4], [5]], [[2, 3, 4, 5]], [[2, 5], [3, 4]], [[2], [3, 4, 5]], [[2, 4], [3, 5]], [[3], [2, 4, 5]], [[2, 3], [4, 5]], [[4], [2, 3, 5]], [[3], [4], [2, 5]], [[2], [4], [3, 5]], [[2], [3], [4, 5]]]

 

15

(1)

 

number of elements in each 'group'

seq(nops(Tours[i]),i=1..nops(Tours))

2, 3, 3, 3, 4, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3

(2)

 

i need to add 1 to each 'subgroup' : These are the first two:

[[[1,op(Tours[1,1])],[1,op(Tours[1,2])]],[[1,op(Tours[2,1])],[1,op(Tours[2,2])],[1,op(Tours[2,3])]]]

[[[1, 5], [1, 2, 3, 4]], [[1, 2], [1, 5], [1, 3, 4]]]

(3)

 

I need to add 1 to each 'subgroup' in a more automatic way.

``


 

Download add_1.mw

 

hi
I want to solve a pde equation:
 

equa1 := diff(u(x,y), x, x)-y(1+x) = 0;

# with codition:

con:=u(0,y) = 0, (D(u[x]))(0,y) = 0;

the anwer must be :    u(x,y)= y(x2/2  + x3/6)
How can i solve that with maple?

Please excuse my bad English
thanks

I am plotting a pair of lists of points using

pointplot(Listap, Listbp, symbol = point, symbolsize = 1, size = [1200, 1200])

 

How could is do this with plot so I can add colours? Along the lines Listap(i)^2+Listbp(i)^2 =R, R is in the range 0..1,then colour =R*256 or any other imaginative way of adding colour.
 

restart

with(plots):

with(plottools):

``

``

NULL

``

z := (m+I*n)/(p+I*q)

(m+I*n)/(p+I*q)

(1)

g := proc (z) options operator, arrow; (z-I)/(z+I) end proc;

proc (z) options operator, arrow; (z-I)/(z+I) end proc

(2)

bz := simplify(evalc(Im(z)));

(-m*q+n*p)/(p^2+q^2)

(3)

a := simplify(evalc(Re(g(z))));

(m^2+n^2-p^2-q^2)/(m^2-2*m*q+n^2+2*n*p+p^2+q^2)

(4)

b := simplify(evalc(Im(g(z))));

(-2*m*p-2*n*q)/(m^2-2*m*q+n^2+2*n*p+p^2+q^2)

(5)

``
"  r:=15;   Lista:=Vector();  Listb:=Vector();  j:=1;  for m from -r to r do   for n from -r to r do   for p  from -r to r do   for q from -r to r do  if p<>0 and q<>0 and m^2-2 m q+n^2+2 n p+p^2+q^2<>0 and bz>=0 then  Lista(j):=a; Listb(j):=b;  j:=j+1;  end if;  end do:  end do;  end do;  end do:  j; :"

435713

(6)

``

``

``

``

``

pointplot(Lista, Listb, symbol = plottools:-point, symbolsize = 1, size = [1200, 1200])

 

NULL

``

``


 

Download 096-Chayley_transform_for_MP_question.mw

i tried to solve a nonlinear ode with numerical method but maple can't solve it and this error occur:

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

my maple codes are attached below:

numeriacal_sol.mw

can any help me?

As I understand it, Maple will detect and use the available cores in a system, if the calculation is suitable for multi-core use.

As I am installing Maple on a multi-user cluster, using a scheduler to run maple scripts, I want to ensure the maple jobs only use the number of cores allocated to the job.  

Is it possible to set the number of cores used ? 

If I have misunderstood how Maple works (I am new to it), or if there is a section in the documentation which explains this, please point me in the right direction.  I haven't found this info so far.

1 2 3 4 5 6 7 Last Page 1 of 33