Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

I am computing some finite points in the plane. Then I'm using point style plot to plot them. My points have order and I want to conncet the i-th point to the (i+1)-th point with a line segment. I searched the help but I didn't figure out how to do it. Is it possible to do this in Maple?

Is there any method or a command to use or type so Maple start running something or evaluating and if it took more than a specific amount of time, then itself automatically stops itself without needing me to interrupt the evaluation?

For example let's say I wrote a proc, for some inputs it may compute the output fast but in some it may even don't answer after hours. Now I am writing a for and I don't know for which steps it can answer in less than a minute. So I like to add something so that Maple starts the FOR but in steps that it takes more than a minute, it automatically stops evaluation at that step and jump to the next step.

I have a set of points. I want to make a linear spline of that points and plot the resulting function:


However I need the function to define constant y endpoint values where x is out of points_x range (i.e. first-derivation is zero where x is out of points_x range). Endpoint options does not work for me.

             constant1   x < xmin
function :=  ..
             constant2   otherwise

How can I define spline function like this?

I'm trying to obtain integral of Planck radiation law in Maple:

with this command:

f := (2*h*(c)^(2))/((x)^(5))*(1)/(exp((h*c)/(x*k*T))-1);

but I get some terrible limit that cannot be solved instead of the correct result:

How to obtain correct integral?

I am coding a big module to solving my project : analyze function in math, but when I compile my module maple return "Error," but it doesn't tell me what error happened.

I check the maple help and it said:" If no msgString is given, error raises the most recently occurring exception" but I have no exception before. 

This is the pic of that error.

Thank for your help.

Hi, my dear friend,

i am solving 9 ODE with boundary

Eq1 := 2.*F1(eta)+diff(H1(eta), eta) = 0

2.*F1(eta)+diff(H1(eta), eta) = 0


Eq2 := F1(eta)^2-G1(eta)^2+(diff(F1(eta), eta))*H1(eta)-(diff(F1(eta), eta, eta)) = 0

F1(eta)^2-G1(eta)^2+(diff(F1(eta), eta))*H1(eta)-(diff(diff(F1(eta), eta), eta)) = 0


Eq3 := 2*F1(eta)*G1(eta)+H1(eta)*(diff(G1(eta), eta))-(diff(G1(eta), eta, eta)) = 0

2*F1(eta)*G1(eta)+H1(eta)*(diff(G1(eta), eta))-(diff(diff(G1(eta), eta), eta)) = 0


Eq4 := 4*F1(eta)*F3(eta)+H3(eta)*(diff(F1(eta), eta))+H1(eta)*(diff(F3(eta), eta))-2*G1(eta)*G3(eta)-2.*F1(eta)^2-1.5*H1(eta)-(diff(F3(eta), eta, eta)) = 0

4*F1(eta)*F3(eta)+H3(eta)*(diff(F1(eta), eta))+H1(eta)*(diff(F3(eta), eta))-2*G1(eta)*G3(eta)-2.*F1(eta)^2-1.5*H1(eta)-(diff(diff(F3(eta), eta), eta)) = 0


Eq5 := 2*F3(eta)*G1(eta)+4*F1(eta)*G3(eta)+H3(eta)*(diff(G1(eta), eta))-H1(eta)*(diff(G3(eta), eta))-2*F1(eta)*G1(eta)-1.5*H1(eta)*(diff(G1(eta), eta))-(diff(G3(eta), eta, eta)) = 0

2*F3(eta)*G1(eta)+4*F1(eta)*G3(eta)+H3(eta)*(diff(G1(eta), eta))-H1(eta)*(diff(G3(eta), eta))-2*F1(eta)*G1(eta)-1.5*H1(eta)*(diff(G1(eta), eta))-(diff(diff(G3(eta), eta), eta)) = 0


Eq6 := 4.*F3(eta)+diff(H3(eta), eta) = 0

4.*F3(eta)+diff(H3(eta), eta) = 0


Eq7 := 6*F1(eta)*F5(eta)-6*F1(eta)*F3(eta)+3.*F3(eta)^2+H1(eta)*(diff(F5(eta), eta))+H3(eta)*(diff(F3(eta), eta))+H5(eta)*(diff(F1(eta), eta))-1.5*(H1(eta)*(diff(F3(eta), eta))+H3(eta)*(diff(F1(eta), eta)))-G3(eta)^2-2*G1(eta)*G5(eta)-(diff(F5(eta), eta, eta)) = 0

6*F1(eta)*F5(eta)-6*F1(eta)*F3(eta)+3.*F3(eta)^2+H1(eta)*(diff(F5(eta), eta))+H3(eta)*(diff(F3(eta), eta))+H5(eta)*(diff(F1(eta), eta))-1.5*H1(eta)*(diff(F3(eta), eta))-1.5*H3(eta)*(diff(F1(eta), eta))-G3(eta)^2-2*G1(eta)*G5(eta)-(diff(diff(F5(eta), eta), eta)) = 0


Eq8 := 6*G5(eta)*F1(eta)+2*G1(eta)*F5(eta)+4*G3(eta)*F3(eta)-4*F1(eta)*G3(eta)-2*F3(eta)*G1(eta)+H1(eta)*(diff(G5(eta), eta))-1.5*(H1(eta)*(diff(G3(eta), eta))+H3(eta)*(diff(G1(eta), eta)))+H3(eta)*(diff(G3(eta), eta))+H5(eta)*(diff(G1(eta), eta))-(diff(G5(eta), eta, eta)) = 0

6*G5(eta)*F1(eta)+2*G1(eta)*F5(eta)+4*G3(eta)*F3(eta)-4*F1(eta)*G3(eta)-2*F3(eta)*G1(eta)+H1(eta)*(diff(G5(eta), eta))-1.5*H1(eta)*(diff(G3(eta), eta))-1.5*H3(eta)*(diff(G1(eta), eta))+H3(eta)*(diff(G3(eta), eta))+H5(eta)*(diff(G1(eta), eta))-(diff(diff(G5(eta), eta), eta)) = 0


Eq9 := 6.*F5(eta)+F3(eta)+diff(H5(eta), eta) = 0

6.*F5(eta)+F3(eta)+diff(H5(eta), eta) = 0


bcs1 := F1(0) = 0, F3(0) = 0, F5(0) = 0

F1(0) = 0, F3(0) = 0, F5(0) = 0


bcs2 := G1(0) = 1, G3(0) = 0, G5(0) = 0

G1(0) = 1, G3(0) = 0, G5(0) = 0


bcs3 := H1(0) = 0, H3(0) = 0, H5(0) = 0

H1(0) = 0, H3(0) = 0, H5(0) = 0


bcs4 := F1(10) = 0, F3(10) = 0, F5(10) = 0

F1(10) = 0, F3(10) = 0, F5(10) = 0


bcs5 := G1(10) = 0, G3(10) = 0, G5(10) = 0

G1(10) = 0, G3(10) = 0, G5(10) = 0


R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5}), [F1(eta), F3(eta), F5(eta), G1(eta), G3(eta), G5(eta), H1(eta), H3(eta), H5(eta)], numeric, output = listprocedure)

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging



Maple Worksheet - Error

Failed to load the worksheet 


then i got this error

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

i dont know where i need to change.. could you help me..

Dear Maple users,

I have very interesting problem with evaluating of only symbolic equations.

The problem is: (In document mode)
When I try to evaluate all numeric values for example typing 1+2 and press Enter it successfuly evaluates 3.
But when I try to evaluate symbolic values for example x + y nothing happens.

I tried lots of things to solve this, but no luck.
Shortly if the equation contains only numbers it evaluates successfuly.
And if the equation contains one or more symbolic variables like (x, y, z, variable1, test1), it does nothing.

What could be the problem?

(Because of this problem I cannot use the document mode, so I'm using the worksheet mode. Worksheet mode works good, but sometimes it is not calculating like document mode)



System is Windows 7 x64
Maple 2016
8 x 3.50GHz Xeon CPU
128 GB RAM
Windows Language is Turkish, (I tried with also USA English, but no luck either)
Keyboard is Turkish TR, (I tried with also US English, but no luck either)

Hello everyone.

Please can I meet with Computational or/and Numerical anlysts that have worked or working on the algorihms particularly (Runge Kutta Nystrom, Block multistep methods including hybrid and Block Boundaru Value methods) for the solution of both IVP and BVP.

I will appreciante if I can learn from them and possibly collaborate with them. Thank you in anticipation of your positive response.

Find and classify all the critical point(s) for 

f(x,y)=x3 + 3xy2 - 15x + y3 - 15y .

I need a help from someone who knows the GRTensor commands.

If you create a tensor of rank 2 using the grdef ("F {(a) (b)}"). Until then, okay!

However, I would like to define each of the 16 tensor components and I do not know how to do.

Could someone help me?

Thank you very much!

Please I am having problem with this code particularly the last subroutine

#subroutine 1


end proc:

#subroutine 2

e1:=y[n+4] = -y[n]+2*y[n+2]+((1/15)*h^2+(2/945)*h^2*u^2+(1/56700)*h^2*u^4-(1/415800)*h^2*u^6-(167/833976000)*h^2*u^8-(2633/245188944000)*h^2*u^10-(2671/5557616064000)*h^2*u^12-(257857/13304932857216000)*h^2*u^14-(3073333/4215002729166028800)*h^2*u^16)*f(n)+((16/15)*h^2-(8/945)*h^2*u^2-(1/14175)*h^2*u^4+(1/103950)*h^2*u^6+(167/208494000)*h^2*u^8+(2633/61297236000)*h^2*u^10+(2671/1389404016000)*h^2*u^12+(257857/3326233214304000)*h^2*u^14+(3073333/1053750682291507200)*h^2*u^16)*f(n+1)+((26/15)*h^2+(4/315)*h^2*u^2+(1/9450)*h^2*u^4-(1/69300)*h^2*u^6-(167/138996000)*h^2*u^8-(2633/40864824000)*h^2*u^10-(2671/926269344000)*h^2*u^12-(257857/2217488809536000)*h^2*u^14-(3073333/702500454861004800)*h^2*u^16)*f(n+2)+((16/15)*h^2-(8/945)*h^2*u^2-(1/14175)*h^2*u^4+(1/103950)*h^2*u^6+(167/208494000)*h^2*u^8+(2633/61297236000)*h^2*u^10+(2671/1389404016000)*h^2*u^12+(257857/3326233214304000)*h^2*u^14+(3073333/1053750682291507200)*h^2*u^16)*f(n+3)+((1/15)*h^2+(2/945)*h^2*u^2+(1/56700)*h^2*u^4-(1/415800)*h^2*u^6-(167/833976000)*h^2*u^8-(2633/245188944000)*h^2*u^10-(2671/5557616064000)*h^2*u^12-(257857/13304932857216000)*h^2*u^14-(3073333/4215002729166028800)*h^2*u^16)*f(n+4):

e2:=y[n+3] = -y[n+1]+2*y[n+2]+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(n)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(n+1)+((97/120)*h^2-(31/10080)*h^2*u^2-(67/302400)*h^2*u^4-(109/8870400)*h^2*u^6-(18127/31135104000)*h^2*u^8-(64931/2615348736000)*h^2*u^10-(9701/9880206336000)*h^2*u^12-(20832397/567677135241216000)*h^2*u^14-(11349439/8646159444443136000)*h^2*u^16)*f(n+2)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(n+3)+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(n+4):

e3:=h*delta[n] = (-149/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[n]+(128/21+(32/245)*u^2+(2648/169785)*u^4+(1118492/695269575)*u^6+(14310311/87603966450)*u^8+(170868550903/10320623287474500)*u^10)*y[n+1]+(-107/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[n+2]+(-(67/1260)*h^2+(1241/198450)*h^2*u^2+(277961/366735600)*h^2*u^4+(26460409/333729396000)*h^2*u^6+(1363374533/168199615584000)*h^2*u^8+(16323847966961/19815596711951040000)*h^2*u^10)*f(n)+((188/105)*h^2+(5078/99225)*h^2*u^2+(556159/91683900)*h^2*u^4+(51834031/83432349000)*h^2*u^6+(67782373/1078202664000)*h^2*u^8+(1854079193287/291405833999280000)*h^2*u^10)*f(n+1)+((31/90)*h^2+(341/33075)*h^2*u^2+(79361/61122600)*h^2*u^4+(23456627/166864698000)*h^2*u^6+(1228061399/84099807792000)*h^2*u^8+(14797833720283/9907798355975520000)*h^2*u^10)*f(n+2)+(-(4/105)*h^2-(46/14175)*h^2*u^2-(809/1871100)*h^2*u^4-(27827/567567000)*h^2*u^6-(637171/122594472000)*h^2*u^8-(33500737/62523180720000)*h^2*u^10)*f(n+3)+((1/252)*h^2+(23/28350)*h^2*u^2+(809/7484400)*h^2*u^4+(27827/2270268000)*h^2*u^6+(637171/490377888000)*h^2*u^8+(33500737/250092722880000)*h^2*u^10)*f(n+4):

e4:=y[3] = -y[1]+2*y[2]+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(0)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(1)+((97/120)*h^2-(31/10080)*h^2*u^2-(67/302400)*h^2*u^4-(109/8870400)*h^2*u^6-(18127/31135104000)*h^2*u^8-(64931/2615348736000)*h^2*u^10-(9701/9880206336000)*h^2*u^12-(20832397/567677135241216000)*h^2*u^14-(11349439/8646159444443136000)*h^2*u^16)*f(2)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(3)+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(4):

e5:=h*delta[0] = (-149/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[0]+(128/21+(32/245)*u^2+(2648/169785)*u^4+(1118492/695269575)*u^6+(14310311/87603966450)*u^8+(170868550903/10320623287474500)*u^10)*y[1]+(-107/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[2]+(-(67/1260)*h^2+(1241/198450)*h^2*u^2+(277961/366735600)*h^2*u^4+(26460409/333729396000)*h^2*u^6+(1363374533/168199615584000)*h^2*u^8+(16323847966961/19815596711951040000)*h^2*u^10)*f(0)+((188/105)*h^2+(5078/99225)*h^2*u^2+(556159/91683900)*h^2*u^4+(51834031/83432349000)*h^2*u^6+(67782373/1078202664000)*h^2*u^8+(1854079193287/291405833999280000)*h^2*u^10)*f(1)+((31/90)*h^2+(341/33075)*h^2*u^2+(79361/61122600)*h^2*u^4+(23456627/166864698000)*h^2*u^6+(1228061399/84099807792000)*h^2*u^8+(14797833720283/9907798355975520000)*h^2*u^10)*f(2)+(-(4/105)*h^2-(46/14175)*h^2*u^2-(809/1871100)*h^2*u^4-(27827/567567000)*h^2*u^6-(637171/122594472000)*h^2*u^8-(33500737/62523180720000)*h^2*u^10)*f(3)+((1/252)*h^2+(23/28350)*h^2*u^2+(809/7484400)*h^2*u^4+(27827/2270268000)*h^2*u^6+(637171/490377888000)*h^2*u^8+(33500737/250092722880000)*h^2*u^10)*f(4):


#subroutine 3


N:=solve(h*p = 500*Pi/2, p):

for j from 0 to 5 do
end do:

    "h","Num.y","Ex.y","Error y");
for k from 1 to N do


res:=eval(<vars>, fsolve(eval({e||(1..5)},[par1,par2]), {vars}));

    for i from 1 to 5 do
    end do:
    for j from 0 to 5 do
        t[j]:=inx + j*h:
    end do:
end do:





Hi, I am trying to solve two nonlinear simultaneous equations with two unknown variables T & W. The Range of one variable T is from 0 to 0.4

When I use fsolve command to solve it, it gives me a solution in which T value is more than the specified range so it is an invalid solution for me. When I specify the range of T from 0 to 0.4 in fsolve, it doesn't give any solution.

Solve command in maple also doesn't give any solution and just shows evaluating.

My question is how can I get all the roots of unknown variables (T & W), which can solve these two simultaneous equations.

The maple worksheet is attached.


I solved a complex PDE equation in maple but I can not plot the output.

The manner was like bellow:

PDE := [diff(A(z, t), z)+(1/2)*alpha*A(z, t)+(I*beta[2]*(1/2))*(diff(A(z, t), t, t))-(I*beta[3]*(1/6))*(diff(A(z, t), t, t, t))-I*(GAMMA(omega[0]))(abs(A(z, t))^2*A(z, t)) = 0];
IBC := {(D[2](A))(z, 1), A(0, t) = -sin(2*Pi*t), A(z, 0) = sin(2*Pi*z), (D[2](A))(z, 0) = 2*z};
pds := pdsolve(PDE, IBC, type = numeric, time = t, range = 0 .. 1);
pds:-plot3d(A(z, t)*conjugate(A(z, t)), t = 0 .. 1, z = 0 .. 10, shading = zhue, axes = boxed, labels = ["x", "t", "A(z,t)"], labelfont = [TIMES, ROMAN, 20], orientation = [-120, 40]);

It is solved but there is an error like:

Error, (in pdsolve/numeric/plot3d) unable to compute solution for z>INFO["failtime"]:
unable to store 11.2781250000000+4390.00000040000*I when datatype=float[8]

could you please help me?

what is the problem?



I have tried to compile a simple program looking for counterexamples to a conjecture by Goldbach that every odd number is a sum of a prime and twice a square. Stern gave the counterexamples 5777 and 5993 a long time ago, so this is mainly for instruction purposes.

My program

   local i,j,M; 
   for i from 1 to M do
      if(sieve[i] mod 2=0) then 
         for j from 1 to iquo(M-i,2*i+1) do 
         end do; 
         for j from 1 to floor(sqrt(M-i)) do 
            sieve[i+j*j]:=2+sieve[i+j*j] mod 2;  
         end do;
         if(sieve[i]<2) then 
            printf("%d is a counterexample\n",2*i+1); 
         end if; 
      end if; 
   end do; 
end proc;

works fine and compiles without problems. (I have to pass the array for the sieve because compiled program cannot declare memory, and it has to be 4 bytes even though I only need to use the lower 2 bit).  But the compiled version breaks with

   Error, (in compiledOGi) array index out of bounds


already in the first instance of the for loop. After a lot of trial and error I found out that if I replaced the line 

   sieve[i+j*j]:=2+sieve[i+j*j] mod 2;  




then the problem goes away and the compiled version works beautifully. It is not enough to do the mod 2 computation in temp, and not enough to replace mod by iquo in one line. 

This makes very little sense to me. Can anybody explain? I'm still using Maple 2016 and do not know if the issue has been resolved in Maple 2017.





Since I am a very recent Maple user, I do not know why I obtained a wrong answer with the following two comands:

Exp:= Psi(rho(x,t),theta(x,t));
                  Psi(rho(x, t), theta(x, t))
Exp1:= diff(Exp,t);
     / d           \                                  
     |--- rho(x, t)| D[1](Psi)(rho(x, t), theta(x, t))
     \ dt          /                                  

          / d             \                                
    + |--- theta(x, t)| Psi(rho(x, t) + 1, theta(x, t))
          \ dt            /                                

Can someone, please, help me?

Thank you.


1 2 3 4 5 6 7 Last Page 3 of 39