70 Reputation

2 Badges

2 years, 26 days
Jon recently completed a PhD in Theoretical Physics at the University of Birmingham, UK. He has a keen interest in Educational Technology with a focus on the application of computer based algebra systems for creating engaging learning resources. Jon first worked with Maple T.A. at the University of Birmingham, where he trained a team of staff and interns to write STEM based questions for deployment across the College of Engineering and Physical Sciences. Jon's time is currently split between his role as the Maple T.A. Development Manager at the University of Birmingham and as a Maple T.A. specialist for Maplesoft.

MaplePrimes Activity

These are Posts that have been published by jwatkins

I am very pleased to announce a new user community centered around Maplesoft's online testing and assessment and courseware products. The new site is specifically for instructors and administrators currently using Maple T.A. or Möbius. This community of users are a small, specialised group who we want to bring together so they can share ideas and best practices. To find the community, go to either mapletacommunity.com or mobiuscommunity.com.

"The Maple T.A. Community has grown organically to support new developers as they pool their knowledge and queries. This has resulted in a fluid searchable structure, with answers available for all levels of question - from beginner to pushing the frontiers of what Maple T.A. has been designed to do. Our summer student interns rely on the Community as they become proficient in their question writing skills - and many have become contributors as they realise that they are in a position to teach others. Opening it out more broadly will be great in sharing good practice on a 'need to know now' basis.”

----Professor Nicola Wilkin, University of Birmingham


What content is in the community?

The community has many posts from active Maple T.A. and Möbius users from beginners to advanced users. The site is broken down into categories like 'Best Practices' - longer form posts that cover a broader concept in more detail and 'Quick Code snippets' that are small piece of code that you can drop straight into your question algorithms.

Much of the content is openly available and can be found by google, however there is additional content that can only be accessed by members of the community, such as the Maple T.A. school material which teaches you how to author content in Maple T.A. and Möbius.


Who runs the community

The community is jointly run by users based at the Univeristy of Birmingham, TU Wien, The University of Turin and TU Delft.


How does this fit into Mapleprimes?

It began as an offshoot of a private, internal customer forum. As this community grows, the ultimate goal is to eventually roll it into MaplePrimes proper. But this alternative site gave us the quickest way to get up and running. Maple T.A. and Möbius questions and posts are still welcome on MaplePrimes, and will continue to be monitored by Maplesoft.


How do I access the community?

You can find the community by going to either mapletacommunity.com or mobiuscommunity.com.


Where else can I get support for Maple T.A. and Mobiüs?

Official support for Maple T.A. and Möbius is provided by the wonderful Customer Success Team at Maplesoft. You can contact them at help@maplesoft.com. For other contact methods see www.maplesoft.com/support/.


Disclaimer: This blog post has been contributed by Prof. Nicola Wilkin, Head of Teaching Innovation (Science), College of Engineering and Physical Sciences and Jonathan Watkins from the University of Birmingham Maple T.A. user group*. 

Written for Maple T.A. 2016. For Maple T.A. 10 users, this question can be written using the queston designer.


Disclaimer: This blog post has been contributed by Dr. Nicola Wilkin, Head of Teaching Innovation (Science), College of Engineering and Physical Sciences and Jonathan Watkins from the University of Birmingham Maple T.A. user group*. 

We all know the problem. During the course of a degree, students become experts at solving problems when they are given the sets of equations that they need to solve. As anyone will tell you, the skill they often lack is the ability to produce these sets of equations in the first place. With Maple T.A. it is a fairly trivial task to ask a student to enter the solution to a system of equations and have the system check if they have entered it correctly. I speak with many lecturers who tell me they want to be able to challenge their students, to think further about the concepts. They want them to be able to test if they can provide the governing equations and boundary conditions to a specific problem.

With Maple T.A. we now have access to a math engine that enables us to test whether a student is able to form this system of equations for themselves as well as solve it.

In this post we are going to explore how we can use Maple T.A. to set up this type of question. The example I have chosen is 2D Couette flow. For those of you unfamiliar with this, have a look at this wikipedia page explaining the important details.

In most cases I prefer to use the question designer to create questions. This gives a uniform interface for question design and the most flexibility over layout of the question text presented to the student.

  1. On the Questions tab, click New question link and then choose the question designer.
  2. For the question title enter "System of equations for Couette Flow".
  3. For the question text enter the text

    The image below shows laminar flow of a viscous incompressible liquid between two parallel plates.

    What is the system of equations that specifies this system. You can enter them as a comma separated list.

    e.g. diff(u(y),y,y)+diff(u(y),y)=0,u(-1)=U,u(h)=0

    You then want to insert a Maple graded answer box but we'll do that in a minute after we have discussed the algorithm.

    When using the questions designer, you often find answers are longer than width of the answer box. One work around is to change the width of all input boxes in a question using a style tag. Click the source button on the editor and enter the following at the start of the question

    <style id="previewTextHidden" type="text/css">
    input[type="text"] {width:300px !important}

    Pressing source again will show the result of this change. The input box should now be significantly wider. You may find it useful to know the default width is 186px.
  4. Next, we need to add the algorithm for this question. The teacher's answer for this question is the system of equations for the flow in the picture.

    $TA="diff(u(y),y,y) = 0, u(0) = 0, u(h) = U";

    I always set this to $TA for consitency across my questions. To check there is a solution to this I use a maple call to the dsolve function in Maple, this returns the solution to the provided system of equations. Pressing refresh on next to the algorithm performs these operations and checks the teacher's answer.

    The key part of this question is the grading code in the Maple graded answer box. Let's go ahead and add the answer box to the question text. I add it at the end of the text we added in step 3. Click Insert Response area and choose the Maple-graded answer box in the left hand menu. For the answer enter the $TA variable that we defined in the algorithm. For the grading code enter


    This code checks that the students system of equations produces the same solution as the teachers. Asking the question in this way allows a more open ended response for the student.

    To finish off make sure the expression type is Maple syntax and Text entry only is selected.
  5. Press OK and then Finish on the Question designer screen.

That is the question completed. To preview a working copy of the question, have a look here at the live preview of this question. Enter the system of equations and click How did I do?


I have included a downloadable version of the question that contains the .xml file and image for this question. Click this link to download the file. The question can also be found on the Maple T.A. cloud under "System of equations for Couette Flow".

* Any views or opinions presented are solely those of the author(s) and do not necessarily represent those of the University of Birmingham unless explicitly stated otherwise.

Disclaimer: This blog post has been contributed by Dr. Nicola Wilkin, Head of Teaching Innovation (Science), College of Engineering and Physical Sciences and Jonathan Watkins from the University of Birmingham Maple T.A. user group*.


If you have arrived at this post you are likely to have a STEM background. You may have heard of or had experience with Maple T.A or similar products in the past. For the uninitiated, Maple T.A. is a powerful system for learning and assessment designed for STEM courses, backed by the power of the Maple computer algebra engine. If that sounds interesting enough to continue reading let us introduce this series of blog posts for the mapleprimes website contributed by the Maple T.A. user group from the University of Birmingham(UoB), UK.

These posts mirror conversations we have had amongst the development team and with colleagues at UoB and as such are likely of interest to the wider Maple T.A. community and potential adopters. The implementation of Maple T.A. over the last couple of years at UoB has resulted in a strong and enthusiastic knowledge base which spans the STEM subjects and includes academics, postgraduates, undergraduates both as users and developers, and the essential IT support in embedding it within our Virtual Learning Environment (VLE), CANVAS at UoB.

By effectively extending our VLE such that it is able to understand mathematics we are able to deliver much wider and more robust learning and assessment in mathematics based courses. This first post demonstrates that by comparing the learning experience between a standard multiple choice question, and the same material delivered in a Maple TA context.

To answer this lets compare how we might test if a student can solve a quadratic equation, and what we can actually test for if we are not restricted to multiple choice. So we all have a good understanding of the solution method, let's run through a typical paper-based example and see the steps to solving this sort of problem.

Here is an example of a quadratic

To find the roots of this quadratic means to find what values of x make this equation equal to zero. Clearly we can just guess the values. For example, guessing 0 would give

So 0 is not a root but -1 is.

There are a few standard methods that can be used to find the roots. The point though is the answer to this sort of question takes the form of a list of numbers. i.e. the above example has the roots -1, 5. For quadratics there are always two roots. In some cases two roots could be the same number and they are called repeated roots. So a student may want to answer this question as a pair of different numbers 3, -5, the same number repeated 2, 2 or a single number 2. In the last case they may only list a repeated roots once or maybe they could only find one root from a pair of roots. Either way there is quite a range of answer forms for this type of question.

With the basics covered let us see how we might tackle this question in a standard VLE. Most are not designed to deal with lists of variable length and so we would have to ask this as a multiple choice question. Fig. 1, shows how this might look.

VLE Question

Fig 1: Multiple choice question from a standard VLE

Unfortunately asking the question in this way gives the student a lot of implicit help with the answer and students are able to play a process of elimination game to solve this problem rather than understand or use the key concepts.

They can just put the numbers in and see which work...

Let's now see how we may ask this question in Maple T.A.. Fig. 2 shows how the question would look in Maple T.A. Clearly this is not multiple choice and the student is encouraged to answer the question using a simple list of numbers separated by commas. The students are not helped by a list of possible answers and are left to genuinely evaluate the problem. They are able to provide a single root or both if they can find them, and moreover the question is not fussy about the way students provide repeated roots. After a student has attempted the question, in the formative mode, a student is able to review their answer and the teacher's answer as well as question specific feedback, Fig. 3. We'll return to the power of the feedback that can be incorporated in a later post.

Maple T.A. Question

Fig. 2: Free response question in Maple T.A.


Maple T.A. Answer

Fig. 3: Grading response from Maple T.A.

The demo of this question and others presented in this blog, are available as live previews through the UoB Maple T.A. user group site.

Click here for a live demo of this question.

The question can be downloaded from here and imported as a course module to your Maple T.A. instance. It can also be found on the Maple TA cloud by searching for "Find the roots of a quadratic". Simply click on the Clone into my class button to get your own version of the question to explore and modify.

* Any views or opinions presented are solely those of the author(s) and do not necessarily represent those of the University of Birmingham unless explicitly stated otherwise.

Page 1 of 1