Hello everyone,

I am creating this post to begin a thread where I will share a series of worksheets on important topics in Complex Analysis, written as part of my notes for my classes. Complex_Analysis_Notes.pdf

The planned sections include:


📚 Topics:

  • Section 1: Infinite Series

  • Section 2: Power Series

  • Section 3: The Radius of Convergence of a Power Series

  • Section 4: The Riemann Zeta Function and the Riemann Hypothesis

  • Section 5: The Prime Number Theorem


Each worksheet will include calculations, plots, and examples using Maple to illustrate key ideas.

I plan to upload one worksheet every week to keep a steady pace and allow time for discussion and feedback between posts.

I hope this thread will be helpful both for learning and for deeper exploration.
Feel free to comment, suggest improvements, or ask questions as I post the materials.

Thank you!

restart; interface(imaginaryunit = 'I'); z := I*(1/3); S_N := proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc; limit(S_N(n), n = infinity); S_N(10); S_N(100); S_N(1000); with(plots); points := [seq([Re(evalf(S_N(n))), Im(evalf(S_N(n)))], n = 0 .. 50)]; pointplot(points, connect = true, symbol = solidcircle, symbolsize = 10, color = blue, labels = ["Re", "Im"])

proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc

 

9/10+(3/10)*I

 

53144/59049+(5905/19683)*I

 

 

restart; interface(imaginaryunit = 'I'); z := I*(1/2); S_N := proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc; limit(S_N(n), n = infinity); S_N(10); S_N(100); S_N(1000); with(plots); points := [seq([Re(evalf(S_N(n))), Im(evalf(S_N(n)))], n = 0 .. 50)]; pointplot(points, connect = true, symbol = solidcircle, symbolsize = 10, color = blue, labels = ["Re", "Im"])

proc (n) options operator, arrow; sum(z^k, k = 0 .. n) end proc

 

4/5+(2/5)*I

 

819/1024+(205/512)*I

 

 

NULL

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum(((1/2)*I)^n, n = 0 .. N) end proc; fullsum := sum(((1/2)*I)^n, n = 0 .. infinity); realpts := [seq([n, Re(S(n))], n = 0 .. 30)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 30)]; limit(Re(S(n)), n = infinity); limit(Im(S(n)), n = infinity); horiz_reallimit := plot(4/5, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot(2/5, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); plots[display]([pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Value"], legend = "Real Part"), pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Value"], legend = "Imaginary Part"), horiz_reallimit, horiz_imaglimit], axes = boxed, labels = ["n", "Partial Sum Value"])

4/5+(2/5)*I

 

4/5

 

2/5

 

 

restart; with(plots); interface(imaginaryunit = 'I'); H := proc (N) local n; sum(1/n, n = 1 .. N) end proc; limit(H(n), n = infinity); limit(Re(H(n)), n = infinity); limit(Im(H(n)), n = infinity); harmonic_pts := [seq([n, H(n)], n = 1 .. 100)]; harmonic_plot := pointplot(harmonic_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], axes = boxed)

infinity

 

infinity

 

0

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum(I^k/k, k = 1 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 1 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 1 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 1 .. 100)]; S_infinite := sum(I^k/k, k = 1 .. infinity); Re(S_infinite); Im(S_infinite); horiz_reallimit := plot(-(1/2)*ln(2), k = 0 .. 100, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot((1/4)*Pi, k = 0 .. 100, color = black, linestyle = 2, thickness = 2); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Real Part"); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Imaginary Part"); plots[display]([real_plot, horiz_reallimit, imag_plot, horiz_imaglimit]); plots[pointplot](complex_pts, symbol = solidcircle, style = pointline, color = blue, axes = boxed, labels = ["Re", "Im"])

-(1/2)*ln(2)+((1/4)*I)*Pi

 

-(1/2)*ln(2)

 

(1/4)*Pi

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum((-(2/3)*I)^n, n = 0 .. N) end proc; fullsum := sum((-2*I*(1/3))^n, n = 0 .. infinity); realpts := [seq([n, Re(S(n))], n = 0 .. 30)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 30)]; limit(Re(S(n)), n = infinity); limit(Im(S(n)), n = infinity); horiz_reallimit := plot(9/13, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot(-6/13, k = 0 .. 30, color = black, linestyle = 2, thickness = 2); plots[display]([pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Value"], legend = "Real Part"), pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Value"], legend = "Imaginary Part"), horiz_reallimit, horiz_imaglimit], axes = boxed, labels = ["n", "Partial Sum Value"])

9/13-(6/13)*I

 

9/13

 

-6/13

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum((I*Pi)^n, n = 0 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 0 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 0 .. 100)]; limit(S(N), N = infinity); limit(Re(S(n)), n = infinity); limit(Im(S(n)), n = infinity); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum (Real Part)"], title = "Real Part of Partial Sums of (Pi i)^n", axes = boxed); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum (Imaginary Part)"], title = "Imaginary Part of Partial Sums of (Pi i)^n", axes = boxed); complex_plot := pointplot(complex_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["Re", "Im"], title = "Partial Sums in Complex Plane (Pi i)^n", axes = boxed)

undefined

 

undefined

 

undefined

 

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; sum(2*I^k/k, k = 1 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 1 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 1 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 1 .. 100)]; S_infinite := sum(2*I^k/k, k = 1 .. infinity); Re(S_infinite); Im(S_infinite); horiz_reallimit := plot(-ln(2), k = 0 .. 100, color = black, linestyle = 2, thickness = 2); horiz_imaglimit := plot((1/2)*Pi, k = 0 .. 100, color = black, linestyle = 2, thickness = 2); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Real Part"); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], axes = boxed, legend = "Imaginary Part"); plots[display]([real_plot, horiz_reallimit, imag_plot, horiz_imaglimit]); plots[pointplot](complex_pts, symbol = solidcircle, style = pointline, color = blue, axes = boxed, labels = ["Re", "Im"])

-ln(2)+((1/2)*I)*Pi

 

-ln(2)

 

(1/2)*Pi

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; add(exp(Pi*I*n)/n, n = 1 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 1 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 1 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 1 .. 100)]; S_infinite := sum(exp(Pi*I*n)/n, n = 1 .. infinity); limit_Re := Re(S_infinite); limit_Im := Im(S_infinite); limit_Re; limit_Im; real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], title = "Real Part of Partial Sums", axes = boxed); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], title = "Imaginary Part of Partial Sums", axes = boxed); complex_plot := pointplot(complex_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["Re", "Im"], title = "Partial Sums in Complex Plane", axes = boxed); plots[display]([real_plot, imag_plot]); plots[display](complex_plot)

-ln(2)

 

-ln(2)

 

0

 

-ln(2)

 

0

 

 

 

restart; with(plots); interface(imaginaryunit = 'I'); S := proc (N) local n; add(exp(2*Pi*I*n), n = 0 .. N) end proc; realpts := [seq([n, Re(S(n))], n = 0 .. 100)]; imagpts := [seq([n, Im(S(n))], n = 0 .. 100)]; complex_pts := [seq([Re(S(n)), Im(S(n))], n = 0 .. 100)]; S_infinite := sum(exp(2*Pi*I*n), n = 1 .. infinity); limit_Re := Re(S_infinite); limit_Im := Im(S_infinite); real_plot := pointplot(realpts, symbol = solidcircle, style = pointline, color = blue, labels = ["n", "Partial Sum Value"], title = "Real Part of Partial Sums", axes = boxed); imag_plot := pointplot(imagpts, symbol = solidbox, style = pointline, color = red, labels = ["n", "Partial Sum Value"], title = "Imaginary Part of Partial Sums", axes = boxed); complex_plot := pointplot(complex_pts, symbol = solidcircle, style = pointline, color = blue, labels = ["Re", "Im"], title = "Partial Sums in Complex Plane", axes = boxed); plots[display]([real_plot, imag_plot]); plots[display](complex_plot)

infinity

 

infinity

 

0

 

 

 
 

``

Download infinite_series.mw


Please Wait...