:

## Kernel connection has been lost

I tried to get the inverse of a 36 by 36 square Matrix, but some time after the evaluation O got the following message: Kernel connection has been lost. The kernel returned the following error message: Execution stopped: Memory allocation failed. Please see >alloc for more detail. You should save the worksheet and restart Maple. Executing commands in Maple requires a connection to the Maple kernel. So what is the problem here. P.S. These are the input of the Matrix > C := Matrix(36, 36); B := Vector(36); > C[1, 1] := 1; C[1, 4] := I*u/s1; C[1, 7] := I*v/s1; C[2, 2] := 1; C[2, 5] := I*u/s1; C[2, 8] := I*v/s1; C[3, 3] := 1; C[3, 6] := I*u/s1; C[3, 9] := I*v/s1; C[4, 10] := 1; C[4, 13] := I*u/w; C[4, 16] := I*v/w; C[5, 11] := 1; C[5, 14] := I*u/w; C[5, 17] := I*v/w; C[6, 12] := 1; C[6, 15] := I*u/w; C[6, 18] := I*v/w; C[7, 19] := 1; C[7, 22] := -I*u/w; C[7, 25] := -I*v/w; C[8, 20] := 1; C[8, 23] := -I*u/w; C[8, 26] := -I*v/w; C[9, 21] := 1; C[9, 24] := -I*u/w; C[9, 27] := -I*v/w; C[10, 28] := 1; C[10, 31] := -I*u/s2; C[10, 34] := -I*v/s2; C[11, 29] := 1; C[11, 32] := -I*u/s2; C[11, 35] := -I*v/s2; C[12, 30] := 1; C[12, 33] := -I*u/s2; C[12, 36] := -I*v/s2; C[13, 1] := -epsilon1; C[13, 10] := 1; C[13, 19] := 1; C[14, 2] := -epsilon1; C[14, 11] := 1; C[14, 20] := 1; C[15, 3] := -epsilon1; C[15, 12] := 1; C[15, 21] := 1; C[16, 4] := -1; C[16, 13] := 1; C[16, 22] := 1; C[17, 5] := -1; C[17, 14] := 1; C[17, 23] := 1; C[18, 6] := -1; C[18, 15] := 1; C[18, 24] := 1; C[19, 7] := -1; C[19, 16] := 1; C[19, 25] := 1; C[20, 8] := -1; C[20, 17] := 1; C[20, 26] := 1; C[21, 9] := -1; C[21, 18] := 1; C[21, 27] := 1; C[22, 1] := I*v/mu1; C[22, 7] := -s1/mu1; C[22, 10] := -I*v; C[22, 16] := w; C[22, 19] := -I*v; C[22, 25] := -w; C[23, 2] := I*v/mu1; C[23, 8] := -s1/mu1; C[23, 11] := -I*v; C[23, 17] := w; C[23, 20] := -I*v; C[23, 26] := -w; C[24, 3] := I*v/mu1; C[24, 9] := -s1/mu1; C[24, 12] := -I*v; C[24, 18] := w; C[24, 21] := -I*v; C[24, 27] := -w; C[25, 10] := exp(w*a); C[25, 19] := exp(-w*a); C[25, 28] := -epsilon2*exp(-s2*a); C[26, 11] := exp(w*a); C[26, 20] := exp(-w*a); C[26, 29] := -epsilon2*exp(-s2*a); C[27, 12] := exp(w*a); C[27, 21] := exp(-w*a); C[27, 30] := -epsilon2*exp(-s2*a); C[28, 13] := exp(w*a); C[28, 22] := exp(-w*a); C[28, 31] := -exp(-s2*a); C[29, 14] := exp(w*a); C[29, 23] := exp(-w*a); C[29, 32] := -exp(-s2*a); C[30, 15] := exp(w*a); C[30, 24] := exp(-w*a); C[30, 33] := -exp(-s2*a); C[31, 16] := exp(w*a); C[31, 25] := exp(-w*a); C[31, 34] := -exp(-s2*a); C[32, 17] := exp(w*a); C[32, 26] := exp(-w*a); C[32, 35] := -exp(-s2*a); C[33, 18] := exp(w*a); C[33, 27] := exp(-w*a); C[33, 36] := -exp(-s2*a); C[34, 10] := I*v*exp(w*a); C[34, 16] := -w*exp(w*a); C[34, 19] := I*v*exp(-w*a); C[34, 25] := w*exp(-w*a); C[34, 28] := -I*v*exp(-s2*a)/mu2; C[34, 34] := -s2*exp(-s2*a)/mu2; C[35, 11] := I*v*exp(w*a); C[35, 17] := -w*exp(w*a); C[35, 20] := I*v*exp(-w*a); C[35, 26] := w*exp(-w*a); C[35, 29] := -I*v*exp(-s2*a)/mu2; C[35, 35] := -s2*exp(-s2*a)/mu2; C[36, 12] := I*v*exp(w*a): C[36, 18] := -w*exp(w*a): C[36, 21] := I*v*exp(-w*a): C[36, 27] := w*exp(-w*a): C[36, 30] := -I*v*exp(-s2*a)/mu2: C[36, 36] := -s2*exp(-s2*a)/mu2:

﻿