:

## Kernel connection has been lost during solve(system of equations)

While solving the following system of equations, i get the error message "Kernel connection has been lost".  I believe it is a memory problem.

eqa := u[1]*u[2]*(B[1]-B[2]) = xi*(u[2]*E-u[2]*v[1]*B[1]-u[1]*E+u[1]*v[2]*B[2]);

eqb := rho[1]*u[1]-rho[2]*u[2] = xi*(rho[1]*v[1]-rho[2]*v[2]);

eqc :=1/2*(2*rho[1]*u[1]^4*u[2]^2+2*p[1]*u[1]^2*u[2]^2-B[1]^2*u[1]^2*u[2]^2+u[2]^2*E^2-2*u[2]^2*E*v[1]*B[1]+u[2]^2*v[1]^2*B[1]^2-2*rho[2]*u[2]^4* u[1]^2-2*p[2]*u[1]^2*u[2]^2+B[2]^2*u[1]^2*u[2]^2-u[1]^2*E^2+2*u[1]^2*E*v[2]*B[2]-u[1]^2*v[2]^2*B[2]^2) = u[1]*u[2]*xi* (rho[1]*u[1]^2*v[1]*u[2]-B[1]*u[2]*E+B[1]^2*u[2]*v[1]-rho[2]*u[2]^2*v[2]*u[1]+B[2]*u[1]*E-B[2]^2*u[1]*v[2]);

eqd := u[1]*u[2]*(rho[1]*u[1]^2*v[1]*u[2]-B[1]*u[2]*E+B[1]^2*u[2]*v[1]-rho[2]*u[2]^2*v[2]*u[1]+B[2]*u[1]*E-B[2]^2*u[1]*v[2]) = -(1/2)*xi* (-2*rho[1]*v[1]^2*u[1]^2*u[2]^2-2*p[1]*u[1]^2*u[2]^2-B[1]^2*u[1]^2*u[2]^2+u[2]^2*E^2-2*u[2]^2*E*v[1]*B[1]+u[2]^2*v[1]^2*B[1]^2+2*rho[2]*v[2]^2*u[1]^2*u[2]^2 +2*p[2]*u[1]^2*u[2]^2+B[2]^2*u[1]^2*u[2]^2-u[1]^2*E^2+2*u[1]^2*E*v[2]*B[2]-u[1]^2*v[2]^2*B[2]^2);

eqe := u[2]*rho[1]*u[1]^2*v[1]^2*gamma-6*u[2]*E*v[1]*B[1]*gamma-u[1]*rho[2]*u[2]^2*v[2]^2*gamma+6*u[1]*E*v[2]*B[2]*gamma-u[2]*rho[1]*u[1]^4 +2*u[2]*E^2*gamma-4*u[2]*v[1]^2*B[1]^2+u[1]*rho[2]*u[2]^4-2*u[1]*E^2*gamma+4*u[1]*v[2]^2*B[2]^2-2*u[2]*E^2+2*u[1]*E^2+u[2]*rho[1]*u[1]^4*gamma- u[2]*rho[1]*u[1]^2*v[1]^2+2*u[2]*gamma*p[1]*u[1]^2+6*u[2]*E*v[1]*B[1]+4*u[2]*v[1]^2*B[1]^2*gamma-u[1]*rho[2]*u[2]^4*gamma+u[1]*rho[2]*u[2]^2*v[2]^2- 2*u[1]*gamma*p[2]*u[2]^2-6*u[1]*E*v[2]*B[2]-4*u[1]*v[2]^2*B[2]^2*gamma = u[1]*u[2]*xi*(v[1]*rho[1]*u[1]^2*gamma-v[1]*rho[1]*u[1]^2 +rho[1]*v[1]^3*gamma-rho[1]*v[1]^3+2*v[1]*gamma*p[1]+4*v[1]*B[1]^2*gamma-4*v[1]*B[1]^2-2*B[1]*E*gamma+2*B[1]*E-v[2]*rho[2]*u[2]^2*gamma +v[2]*rho[2]*u[2]^2-rho[2]*v[2]^3*gamma+rho[2]*v[2]^3-2*v[2]*gamma*p[2]-4*v[2]*B[2]^2*gamma+4*v[2]*B[2]^2+2*B[2]*E*gamma-2*B[2]*E);

solve({eqe, eqd, eqc, eqb, eqa}, [xi, u[1], v[1], p[1], B[1]]);

This is a simple non-linear 5*5 system and i believe maple should be able to solve it.  If anybody has an idea, please let me know.  Thanks,

Peter

﻿