Maple 12 Questions and Posts

These are Posts and Questions associated with the product, Maple 12

I have an analytical equation with respect to time that is a Fourier series expansion of a specific function.  I would like MAPLE to generate a table of results against time.  I have always used MATLAB to handle numeric data.  How can I generate a data table in MAPLE.  I have never used the Spreadsheet tool in MAPLE.  Is that the way to go?  Is there some examples on how to do this?

My analytical function is attached:

untitled4.mw

I read from another posting that plottools:-getdata is the way to go, but I do not see that functionality in MAPLE 12?

when use cmaple and print command to show result in text file, it use multiple line to express

but not maple command

how to print the maple command instead of multiple line expression when use cmaple

series(1/(1-x), x=0);
can be express as sum(x^y,y=0..infinity)
 
series(tanh(x), x=0);
how to express tanh(x) and tanh(x+1)?
 
is there any function and procedure to generate x^y these kind of result?

g2 := arctanh((exp(2*y)+sqrt((exp(2*y))^2+exp(2*y)))/exp(2*y)-1)-1;
singular(g2);
FunctionAdvisor(definition, g2);
plot(g2, y=-5..5);
 

Assume I had a 2D line

how to put and draw this line into a new geometric world defined by patch?

how to find back a patch in maple from Pi+GaussCurvature*Area(triangle) = Pi

restart:
with(LinearAlgebra):
EFG := proc(X)
local Xu, Xv, E, F, G;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
E := DotProduct(Xu, Xu, conjugate=false);
F := DotProduct(Xu, Xv, conjugate=false);
G := DotProduct(Xv, Xv, conjugate=false);
simplify([E,F,G]);
end proc;

UN := proc(X)
local Xu,Xv,Z,s;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
Z := CrossProduct(Xu,Xv);
s := VectorNorm(Z, Euclidean, conjugate=false);
simplify(<Z[1]/s|Z[2]/s|Z[3]/s>,sqrt,trig,symbolic);
end:

lmn := proc(X)
local Xu,Xv,Xuu,Xuv,Xvv,U,l,m,n;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
Xuu := <diff(Xu[1],u), diff(Xu[2],u), diff(Xu[3],u)>;
Xuv := <diff(Xu[1],v), diff(Xu[2],v), diff(Xu[3],v)>;
Xvv := <diff(Xv[1],v), diff(Xv[2],v), diff(Xv[3],v)>;
U := UN(X);
l := DotProduct(U, Xuu, conjugate=false);
m := DotProduct(U, Xuv, conjugate=false);
n := DotProduct(U, Xvv, conjugate=false);
simplify([l,m,n],sqrt,trig,symbolic);
end proc:

GK := proc(X)
local E,F,G,l,m,n,S,T;
S := EFG(X);
T := lmn(X);
E := S[1];
F := S[2];
G := S[3];
l := T[1];
m := T[2];
n := T[3];
simplify((l*n-m^2)/(E*G-F^2),sqrt,trig,symbolic);
end proc:

sph := <f(u,v)|g(u,v)|h(u,v)>;
cur := GK(sph);
X := sph;
Xu := <diff(X[1],u), diff(X[2],u), diff(X[3],u)>;
Xv := <diff(X[1],v), diff(X[2],v), diff(X[3],v)>;
Z := CrossProduct(Xu,Xv);
AreaTriangle := int(int(Z[1]^2+Z[2]^2+Z[3]^2,v=-Pi/2..Pi/2),u=0..2*Pi);
dsolve(Pi+cur*AreaTriangle = Pi, [f(u,v),g(u,v),h(u,v)]);
 

in the steps below, it is not fluent to do, and appear diff(1,t)

KineticEnergy := 1/2*m*diff(x(t), t)^2;
PotentialEnergy := subs(x=x(t),int((1/R^2)^2,x));
Action := KineticEnergy - PotentialEnergy;
AA := diff(Action,x(t)) - diff(diff(Action, diff(x(t),t)),t) = 0 <-------- Dsolve this
AA := eval(subs(diff(1,t)=0,diff(Action,x(t))) - Diff(subs(p=Diff(x(t),t),diff(subs(Diff(x(t),t)=p, Action), p)),t)) = 0
dsolve(AA, x(t));
 

Where R is constant

this equation is complicated

how to dsolve for this equation for function f ?

f(t,x,diff(x,t)) - f(t,x,p) - (diff(x,t)-p)*diff(f(t,x,p), p) = tan(t)
 

updated:
P := evalm(p2 + c*vector([cos(q1+q2+q3), sin(q1+q2+q3)]));
 
restart:
with(Groebner):
p1 := vector([a*cos(q1), a*sin(q1)]);
p2 := evalm(p1 + b*vector([cos(q1+q2), sin(q1+q2)]));
P := evalm(p2 + c*vector([cos(q1+q2+q3), sin(q1+q2+q3)]));
Pe := map(expand, P);
A := {cos(q1) = c1, sin(q1) =s1, cos(q2)=c2, sin(q2)=s2, cos(q3)=c3, sin(q3)=s3};
P := subs(A, op(Pe));
F1 := [x - P[1], y - P[2], s1^2+c1^2-1, s2^2+c2^2-1, s3^2+c3^2-1 ];
F2 := subs({a=1, b=1, c=1}, F1);
 
g2 := Basis(F2, plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[1], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[2], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[3], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[4], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[5], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[6], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[7], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[8], plex(c3, s3, c2, s2, c1, s1));
LeadingTerm(g2[9], plex(c3, s3, c2, s2, c1, s1));
 
                                   1, c1
                               2       2    2   2
                           16 y  + 16 x , s1  s2
                                           2
                                 8 x, c1 s2
                                2      2    2  
                             2 y  + 2 x , s1  c2
                                 2 x, c1 c2
                            3            2        
                         2 x  - 2 x + 2 y  x, s2 c2
                                        2
                                   1, c2
                                   2 x, s3
                                    2, c3
originally i think
g2[1], g2[7], g2[9] have single variables c1, c2, c3 respectively
can be used to solve system
 
but without x and y, these equations can not be used
if choose leading term has x and y , but there is no single variable s1 or c1.
 
originally expect solve as follows
g2spec := subs({x=1, y=1/2}, [g2[3],g2[5],g2[6]]);
S1 := [solve([g2spec[1]])];
q1a := evalf(arccos(S1[1]));
q1b := evalf(arccos(S1[2]));
S2 := [solve(subs(s1=S1[1], g2spec[2])), solve(subs(s1=S1[2], g2spec[2])) ];
q2a := evalf(arccos(S2[1]));
q2b := evalf(arccos(S2[2]));
S3 := [solve(subs(s1=S2[1], g2spec[2])), solve(subs(s1=S2[2], g2spec[2])) ];
q2a := evalf(arccos(S3[1]));
q2b := evalf(arccos(S3[2]));
 

f := -ln(-1-ln(exp(x)))+ln(-ln(exp(x)))-Ei(1, -1-ln(exp(x)))+Ei(1, -ln(exp(x)))
solve(limit(diff((subs(x=q, f)-f),h), h=0) = f, q);
limit(diff((subs(x=x*h, f)-f),h), h=0);
Error, (in limit/dosubs) invalid input: `limit/dosubs` uses a 3rd argument, newx, which is missing

guess an operator called Lee, Lee(f, x) = f

solve(limit(diff((subs(x=q, f)-f),h), h=0) = f, q);

suspect q = x*h or q=x*f

limit(diff((subs(x=x*h, f)-f),h), h=0);
Error, (in limit/dosubs) invalid input: `limit/dosubs` uses a 3rd argument, newx, which is missing
 
limit(diff((subs(x=f*h, f)-f),h), h=0);
Error, (in depends/internal) invalid input: `depends/internal` uses a 2nd argument, x, which is missing

sys1:=-.736349402144656384 = -1.332282598*10^12*(-.99999999999999966)^po1-1.332282598*10^12*(-.99999999999999966)^po2-.735533633151605248*Resid;

sys2:=.326676717828940144 = 1.331567176*10^12*(-.99999999999999966)^po1+1.331567176*10^12*(-.99999999999999966)^po2+.325144093024965720*Resid;

sys3:=.590327283775080036 = -1.072184073*10^9*(-.99999999999999966)^po1-1.072184073*10^9*(-.99999999999999966)^po2+.589610307487437146*Resid;

Minimize(sys1, {sys2,sys3},assume = nonnegative);

complex value encountered;

how to calculate basis <1,4,0>, <1,0,4> for eigenvalue 2;

how to calculate basis <1,0,1> for eigenvalue -1;

with(LinearAlgebra):
A := Matrix([[-2,1,1],[0,2,0],[-4,1,3]]);

sys1 := Eigenvalues(A)[1]*IdentityMatrix(3)-A;

sys1 := Eigenvalues(A)[2]*IdentityMatrix(3)-A;
sys1 := Eigenvalues(A)[3]*IdentityMatrix(3)-A;

 

B:=[<sys1[1,1],sys1[2,1],sys1[3,1]>,<sys1[1,2],sys1[2,2],sys1[3,2]>,<sys1[1,3],sys1[2,3],sys1[3,3]>,<0,0,0>];
LinearAlgebra:-Basis(B);

but not <1,4,0>, <1,0,4> for eigenvalue 2


 

invalid input: LinearAlgebra:-Basis expects its 1st argument, V, to be of type {Vector, set(Vector), list(Vector)

A:=<<5,5,5>|<1,2,3>|<-5,1,2>>;
Basis(A);
 

1.op(0,Expr) , op(1,Expr)

2. indets(eq1,{string,name})

3. type(varlist[ii], function)

read example
 
sph := <R*cos(u)*cos(v)|R*sin(u)*cos(v)|R*sin(v)>;
GK(sph); #Gauss Curvature
MK(sph); #Mean Curvature
 
how to find sph if slope is tan(u) ?
 
First 11 12 13 14 15 16 17 Last Page 13 of 32