Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

hi, the equations read as 

eq:=[2*x-0.2e-1*y-2.04*sqrt(-v^2+1)*v, 2*y-0.2e-1*x-2.16*sqrt(-u^2+1)*u, 2*u+2.16*u^2*y/sqrt(-u^2+1)-2.16*sqrt(-u^2+1)*y, 2*v+2.04*v^2*x/sqrt(-v^2+1)-2.04*sqrt(-v^2+1)*x] ;

i do as follows using DirectSearch package v.2

i find the solutions not the same,some time the results not much difference,but another,sols1 have one solution,sols2 have three solutions.in some time,some solutions are lost,the result show  me  random.may i have run the command serveral times? regards.

Why does Maple 2015 solve this very simple system incorrectly?

solve({abs(a-b)=0, sqrt(2*b+c)=0, c^2-c+1/4=0});

              

 

With Maple 12 no problem:

solve({abs(a-b)=0, sqrt(2*b+c)=0, c^2-c+1/4=0});

              

 

 

With this application we can meet safety characteristics of a relationship and simple or compound functions. Made with maple 2015.

Relaciones_y_Funciones.mw

(in spanish)

L.AraujoC.

I have been trying to fit a function to experimental data. To do this i was using

.

The data is of the type

.

When I use initialvalues, I get a result, that fits the data well, but is clearly not the desired minimum. Maple delivers g always bigger than 10000 which is nowhere near -7, where it has to be for physical reasons. When using parameterranges I get the error

Warning, no iterations performed as initial point satisfies first-order conditions.

He stopps computing and simply prints out my initialvalues or the first value that is in the parameterrange with a huge RSS.

How can I use initialvalues and parameterranges together for my data?

I would like to create a variable name that consists of a greek letter and an english letter. For example, δx.   If I type

>delta = 5;

Maple displays the output as δ = 5

However, I would like to have variable names that are output as δx.

Is there a way to do this in worksheet mode? I tried cat(delta,x) but that just gave me deltax.

 

Thanks for your help,

Harish

Hello. Earlier, I asked about it, (see http://www.mapleprimes.com/questions/203573-How-To-Do-Simple-Operations-On-Tensors). However, not all I was able to understand. Below I will give a try, and maybe you'll show me where I'm wrong.

Also, I'm interested in how you can determine the components of the tensor in a different coordinate system connected with the original in any conversion. Thank for your help.

restart; with(Physics); with(DifferentialGeometry)

ds := Physics:-`^`(dx__1, 2)+Physics:-`^`(dx__2, 2)+Physics:-`^`(dx__3, 2)

dx__1^2+dx__2^2+dx__3^2

(1)

Physics:-Setup(coordinates = (X = [x__1, x__2, x__3]), dimension = 3, metric = ds, quiet)

[coordinatesystems = {X}, dimension = 3, metric = {(1, 1) = 1, (2, 2) = 1, (3, 3) = 1}]

(2)

g_[]

g_[mu, nu] = (Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 2) = 1, (2, 3) = 0, (3, 3) = 1}, storage = triangular[upper], shape = [symmetric]))

(3)

``

u__1 := Physics:-`*`(Physics:-`*`(P, Physics:-`^`(Physics:-`*`(Physics:-`*`(4, Pi), G), -1)), Physics:-`*`(x__3, Physics:-`*`(x__1, Physics:-`^`(Physics:-`^`(r, 3), -1)))-Physics:-`*`(Physics:-`*`(1-Physics:-`*`(2, nu), x__1), Physics:-`^`(Physics:-`*`(r, r+x__3), -1))):u__2 := Physics:-`*`(Physics:-`*`(P, Physics:-`^`(Physics:-`*`(Physics:-`*`(4, Pi), G), -1)), Physics:-`*`(x__2, Physics:-`*`(x__3, Physics:-`^`(Physics:-`^`(r, 3), -1)))-Physics:-`*`(Physics:-`*`(1-Physics:-`*`(2, nu), x__2), Physics:-`^`(Physics:-`*`(r, r+x__3), -1))):u__3 := Physics:-`*`(Physics:-`*`(P, Physics:-`^`(Physics:-`*`(Physics:-`*`(4, Pi), G), -1)), Physics:-`*`(Physics:-`*`(2, 1-nu), Physics:-`^`(r, -1))+Physics:-`*`(Physics:-`^`(x__3, 2), Physics:-`^`(Physics:-`^`(r, 3), -1))):

`e__1,1` := diff(u__1, x__1):`e__2,2` := diff(u__2, x__2):`e__3,3` := diff(u__3, x__3):

`e__1,2` := Physics:-`*`(Physics:-`^`(2, -1), diff(u__1, x__2)+diff(u__2, x__1)):`e__1,3` := Physics:-`*`(Physics:-`^`(2, -1), diff(u__1, x__3)+diff(u__3, x__1)):`e__2,3` := Physics:-`*`(Physics:-`^`(2, -1), diff(u__2, x__3)+diff(u__3, x__2)):

`e__2,1` := `e__1,2`:

`e__3,1` := `e__1,3`:

`e__3,2` := `e__2,3`:

  E := matrix(3, 3, proc (i, j) options operator, arrow; e[i, j] end proc)

Matrix(3, 3, {(1, 1) = e[1, 1], (1, 2) = e[1, 2], (1, 3) = e[1, 3], (2, 1) = e[2, 1], (2, 2) = e[2, 2], (2, 3) = e[2, 3], (3, 1) = e[3, 1], (3, 2) = e[3, 2], (3, 3) = e[3, 3]})

(4)

Physics:-Define(E[i, j])

{gamma[mu], E[i, j], sigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], delta[mu, nu], epsilon[alpha, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(5)

Physics:-TensorArray(%)

{E[i, j], Array(1..3, 1..3, 1..3, {(1, 1, 1) = 0, (1, 1, 2) = 0, (1, 1, 3) = 0, (1, 2, 1) = 0, (1, 2, 2) = 0, (1, 2, 3) = 0, (1, 3, 1) = 0, (1, 3, 2) = 0, (1, 3, 3) = 0, (2, 1, 1) = 0, (2, 1, 2) = 0, (2, 1, 3) = 0, (2, 2, 1) = 0, (2, 2, 2) = 0, (2, 2, 3) = 0, (2, 3, 1) = 1, (2, 3, 2) = 1, (2, 3, 3) = 1, (3, 1, 1) = 0, (3, 1, 2) = 0, (3, 1, 3) = 0, (3, 2, 1) = -1, (3, 2, 2) = -1, (3, 2, 3) = -1, (3, 3, 1) = 0, (3, 3, 2) = 0, (3, 3, 3) = 0}), Array(1..3, {(1) = x__1, (2) = x__2, (3) = x__3}), Array(1..3, {(1) = Physics:-Psigma[1], (2) = Physics:-Psigma[2], (3) = Physics:-Psigma[3]}), Array(1..3, {(1) = Physics:-d_[1], (2) = Physics:-d_[2], (3) = Physics:-d_[3]}), Array(1..3, {(1) = Physics:-Dgamma[1], (2) = Physics:-Dgamma[2], (3) = Physics:-Dgamma[3]}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1}), Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1})}

(6)

``

Physics:-Setup(dimension)

[dimension = 3]

(7)

NULL

Physics:-Define(E[i, j], query)

[E, [0, 0, 0], 0]

(8)

DifferentialGeometry:-DGsetup([y__1, y__2, y__3], M):

Phi1 := DifferentialGeometry:-Transformation(N, M, [y__1 = Physics:-`*`(Physics:-`^`(sqrt(6), -1), x__1)+Physics:-`*`(Physics:-`*`(2, Physics:-`^`(sqrt(6), -1)), x__2)+Physics:-`*`(Physics:-`^`(sqrt(6), -1), x__3), y__2 = Physics:-`*`(Physics:-`^`(sqrt(2), -1), x__1)-Physics:-`*`(Physics:-`^`(sqrt(3), -1), x__2)+Physics:-`*`(Physics:-`^`(sqrt(3), -1), x__3), y__3 = Physics:-`*`(Physics:-`^`(sqrt(2), -1), x__1)-Physics:-`*`(Physics:-`^`(sqrt(2), -1), x__3)]):

NULL

 

Download 1.mw

Another application for the study of rational numbers in operations, generating fraction, etc.

 

Numeros_Racionales.mw

(in spanish)

 

Atte.

L.AraujoC.


restart; with(Physics); with(Tetrads); with(PDETools)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1)

coords := zetabar, zeta, v, u

zetabar, zeta, v, u

(2)

X = [coords]

X = [zetabar, zeta, v, u]

(3)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(coords)), Physics:-`^`(du+Physics:-`*`(Ybar(coords), dzeta)+Physics:-`*`(Y(coords), dzetabar)-Physics:-`*`(Physics:-`*`(Y(coords), Ybar(coords)), dv), 2))

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(4)

PDEtools:-declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(5)

vierbien := Matrix([[1, 0, -Ybar(coords), 0], [0, 1, -Y(coords), 0], [Physics:-`*`(H(coords), Y(coords)), Physics:-`*`(H(coords), Ybar(coords)), 1-Physics:-`*`(Physics:-`*`(H(coords), Y(coords)), Ybar(coords)), H(coords)], [Y(coords), Ybar(coords), -Physics:-`*`(Y(coords), Ybar(coords)), 1]])

vierbien := Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1})

(6)

``

Physics:-Setup(coordinatesystem = (X = [zetabar, zeta, v, u]), metric = ds2, tetrad = vierbien, mathematicalnotation = true, automaticsimplification = true, signature = "+++-")

RicciT := proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(7)

SlashD := proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-D_[mu](f)*e_[a, `~mu`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[mu](f), Physics:-Tetrads:-e_[a, `~mu`])) end proc

(8)

SlashD(H(X), 4) = H(X)[4]

(diff(H(X), zetabar))*Ybar(X)+(diff(H(X), zeta))*Y(X)+diff(H(X), v)-(diff(H(X), u))*Y(X)*Ybar(X) = H(X)[4]

(9)

Gamma := proc (a, b, c) options operator, arrow; -gamma_[a, b, c] end proc

proc (a, b, c) options operator, arrow; Physics:-`*`(Physics:-Tetrads:-gamma_[a, b, c], -1) end proc

(10)

Gamma(1, 4, 4) = 0

-(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0

(11)

``

Gamma(2, 4, 4) = 0

-(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0

(12)

``

Gamma(3, 4, 4) = 0

0 = 0

(13)

``

Gamma(4, 4, 4) = 0

0 = 0

(14)

Gamma(4, 1, 1) = 0

-(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0

(15)

``

Gamma(4, 2, 2) = 0

-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0

(16)

NULL

shearconditions := {-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0, -(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0, -(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0, -(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0}

{-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0, -(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0, -(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0, -(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0}

(17)

simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*((diff(H(X), zetabar))*Ybar(X)+(diff(H(X), zeta))*Y(X)+diff(H(X), v)-(diff(H(X), u))*Y(X)*Ybar(X))*(diff(Ybar(X), u))+2*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v)))*(diff(Y(X), u))*Ybar(X) = 0

(18)

0 = 0

0 = 0

(19)

The values in the paraenthesis  should substitute H[4]. This sequence works in Maple 18 but not in Maple 2015

 

NULL


Download Question_algsubs_3.27.15.mw

Hi

I'm trying to use the command: DocumentTools[Retrieve](path,label), but i recieve the message "unable to retrieve label reference" no mather what i do. When i use the GUI: Insert - reference and get the value it works fine, but in that way I can't assign the value to a variable in the document.

here is an example:

The document i want to retrieve a value from:

restart;

a := 5;

#a gets the label (1)

 

The document i want to retrieve the value to:

restart;
with(DocumentTools);

path := FileTools:-JoinPath(["test.mw"], base = worksheetdir); = "C:\Users\Nicolai\CloudStation\Nicolai\Skole stof\Sem 7\test.mw"

 

Retrieve(path, "());
Retrieve(path, "(1)");
Retrieve(path, "a");

#None of the above works

 

Is it even possible to do such thing?

with best regards

Nicolai

Hello I download maple2015 today but I dont know how can I work with it ?  how can I write math phrases?

Please help me soon!!!!

Maplesim 7.0(1) installer looks for Maple 18 installation.  Will Maplesim work with Maple 2015?

If not, what is the expected date of making both products compatible?

Regards,

G

Hello everyone. I am trying to make a position time graph of a charged particle in an gravitational and electric field. This is just for an application of Maple to Lagrangian mechanics. I have set up my Lagrangian, did the Euler-Lagrange equation, and solved the differential equation. When I go to plot it, just the axes show up and I dont have a line. I have followed other examples of Lagrangian mechanics in Maple and its still not working. Here is the code for the odeplot:

Eq7:=dsolve({Eq6,initial},{q(t)},numeric,output=listprocedure)

odeplot(Eq7,t=0..10)

Eq6 is the Euler-Lagrange equation for my system, initial is the initial values, and q(t) is the position of the particle.

Any suggestions will help.

 

 

I purchased the student edition today, and after install and activation, it says the product is only available in 20 days. If I click the activate button, I repeat the successful activation process, but after another restart of Maple, the prompt comes out again, Eventually I clicked on OK, and I found that the license for me really expires in 20 days. 

I think it could be that my proof for student is not processed yet (no email), or a problem.

I wonder if there is anyone else purchased the student edition and encounter the same situation, and what is following next.

As maple 18 does not, and I see no information about this topic for 2015 version, besides, I don't have a chance to try the software. So any help would be appreciated.

Maplesoft regularly hosts live webinars on a variety of topics. Below you will find details on an upcoming webinar we think may be of interest to the MaplePrimes community.  For the complete list of upcoming webinars, visit our website.

See What’s New in Maple 2015 for Educators

Maple 2015 is a major new release of Maple, the technical computing software used for education, research, and development involving mathematics, engineering, and the sciences. With Maple 2015, Maplesoft offers important new abilities to both educators and researchers, particularly in the areas of data analysis, application development and statistics education. This webinar will provide a complete overview of these new features, including:

• A new interface to access, work with, and visualize millions of datasets in the areas of finance, economics, and demographics.
• New facilities for developing Math Apps, including a new microphone and speaker component.
• Advances in integration, differential equations, interactive maps, group theory, physics, and more.
• New Clickable Math tools, including palettes and 60 new interactive Math Apps.
• New tutors, palettes and Math Apps designed explicitly for teaching and learning statistics.
• And more!

To join us for the live presentation, please click here to register.

First 56 57 58 59 Page 58 of 59