Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

Hello people in mapleprimes,
I have a question.

I use maple2019 with mac os 10.14.6.

$ sw_vers
ProductName:	Mac OS X
ProductVersion:	10.14.6
BuildVersion:	18G95

With maple2019, errors appears.

> kernelopts(version);
        Maple 2019.1, APPLE UNIVERSAL OSX, Jun 6 2019, Build ID 1403154

> assume(a>-1,b>0);
> additionally(a<=1);
> about(a);
Originally a, renamed a~:
  is assumed to be: FAIL

> assume(tau<1,tau>0,s<1,s>0):
> a_e1:=tau*s*(1+tau)<tau*s+tau+s-1:
> b_e2:=expand(lhs(a_e1)-rhs(a_e1))<0:
>  b_e3:=collect(b_e2,s,factor):
> solve(b_e2,s) assuming tau<1;
Error, (in assuming) when calling 'property/ConvertProperty'. Received: 'FAIL
is an invalid property'

On the other hand, with maple2018, they do not.

> kernelopts(version);
       Maple 2018.2, APPLE UNIVERSAL OSX, Nov 16 2018, Build ID 1362973

> assume(a>-1,b>0);
> additionally(a<=1);
> about(a);
Originally a, renamed a~:
  is assumed to be: RealRange(Open(-1),1)

> assume(tau<1,tau>0,s<1,s>0):
> a_e1:=tau*s*(1+tau)<tau*s+tau+s-1:
> b_e2:=expand(lhs(a_e1)-rhs(a_e1))<0:
> b_e3:=collect(b_e2,s,factor):
> solve(b_e2,s) assuming tau<1;
                                    1
                               [{-------- < s~}]
                                 1 + tau~

Are errors due to some bugs in maple2019 when being used with mac os 10.14.6?

Take care.

taro

Hi everybody!

 

Quick question for you guys. I have access to Maple 2019 on my main computer and Maple 2018 on a remote Desktop (but I don't want to use because it's super slow and bad (normal rdp stuff)). The problem I have is for the same document, same line, same instruction, Maple 2019 on my computer is failling to do it correctly (unable to do the matrix correctly) and in the Remote Maple 2018 it's doing it just fine. I really don't understand. If someone can give me a little help it would be highly apreciated!

 

Maple 2018 (what it's supposed to do):

 

Maple 2019 (what it is not suppose to do):

Glyph2.maple

The above link is a maple workbook containing the package Glyph2 together with the install script and two worksheets illustrating the difficulty I am having with the code in the procedure assignaltbasis (near the end of the code in Glyph2.mpl).

The problematic code is shown standalone is basisdemo worksheet, but reproduced below for reference. Interestingly, even though the table should be evaluated in a seq command, outside the module it works without eval. Inside the module evaluation does not make any difference.

indxs := [1, 2, 3, 4];
altbasis := [seq(seq(e[i[]], i = combinat:-choose(indxs, 2*k)), k = 1 .. 2)];
gen := table([seq(op(gen[i]) = bivec[i], i = 1 .. nops(gen))]);
exprs := [seq(exteriorp(seq(gen[op(2*i - 1 .. 2*i, b)], i = 1 .. nops(b)/2)), b = altbasis)];

The worksheet Basischangedemo shows how the exported procedure “assignaltbasis” is used in the module and the error that results if a bivector basis is used. From experimentation I have found that the error results because “assignaltbasis” passes the table name to the procedure “exteriorp” instead of the bivectors that should have resulted from evaluation of the table. Including the eval command within the seq procedure does not make any difference to the result. I am unclear whether this is a problem with evaluation of the table or a problem that results from namespace conflict.

I have a further namespace problem with the local variables, AltRoot, AltToStd, and StdToAlt which store the results from assignaltbasis.  If I declare these variables as exports, I get an error message “attempt to assign to a protected variable”. Therefore I added an exported procedure “ShowAltBasis” to display the results.  As you can see, this procedure produces the fully-qualified names of each blade making the result difficult to read. I would prefer to get rid of the “Glyph2:-” qualification.

The waters are muddied even further because the other worksheet, “basisdemo”, contains the core code extracted from assignaltbasis showing that the code using the table actually works (outside the module). From this I conclude that a namespace conflict exists within the module, preventing the table from fully evaluating.

My understanding is that within the module local and exported names are more or less equivalent, so I am puzzled why local and exported names in assignaltbasis are so problematic.

I would appreciate any advice about these issues. Clearly my understanding of maple’s namespaces is incomplete.

I'm using dsolve command to solve a differential equation. Using infolevel to 3 will tell me the classification of said DE. However, how can I see the step by step solution? I'm using Maple as a study tool so I do solve manually a DE then I'd like to compare my answer with Maple's. How can I acomplish this? Thanks in advance. 

Please may I know if you can offer ma student's discount ob the seleted version.

Thank you.

Fred.

Yeah, i have tried evalf[10](sqrt(25)).
How can i get a simple number as answer? I'm loving the software but i just wished i could type in:
int(sin(x), x = 0 .. pi)
and get 2 instead of (2.739493386*10^(-116) + (2.739493386*10^(-116))*I)*pi.
Also, when i type evalf[50](pi), i wish to get all the 50 digits, but i just get \pi :/.
Please help me.

Dear Maple users

Some students have come to us to report, that something doesn't seem to work properly in Maple 2019.1 in Document Mode. And they seem to be right: writing an passive math formula by using Shift+F5 (the formula is gray, not blue), then using F5 to get out of that Math field and back into Text Mode. Using the Enter key to go to the next line: It doesn't work! The cursor stays in the same line. This behavior is new in Maple 2019. It worked properly in Maple 2018 and earlier. I assume it is not the intention? 

I know it can easily be dealt with by making a new Paragraph by using the shortcut Ctrl+Shift+J. I call the assumed bug 'severe' though, because it will severely delay the workflow for many students. They are used to deliver a document mixed with formulas (active or passive) and text. 

NB! I have tested it on several computers (Mac and Windows), and it doesn't work on any of them.

Regards,

Erik V.

I've recently changed to maple 2019, from the 2016 version as my license for that product had expired. 
However I find it really frustrating that often upon evaluating an expression I can't convert the units. 

For instance I had a calculation that evaluated to: 

2.114163508*10^7 [kg/s^2]
 

When I try to directly replace the units within maple to instead be [J/m^2] I recieve the following error message: 


"Error, (in  Units:-TestDimensions) 'op(3, i) does not  evaluate to module" 

There is no explanation for this error when I try to look it up. However if I once again manually write the answer: 
2.114163508*10^7 [kg/s^2] and use the replace units function. 
No problem. 
I find this quite annoying and frustrating and I hope you can help.
 

Best regards 

Anders Alexander Wagenblast 

This is may be a philosophical question. But sometimes Maple suprises me when telling it to "simplify" expression. As in this example.

expr:=1/(y^3+1)^(2/3);

1/(y^3+1)^(2/3)

int(expr,y)

y*hypergeom([1/3, 2/3], [4/3], -y^3)

simplify(%)

(2/9)*y*Pi*3^(1/2)*LegendreP(-1/3, -1/3, (-y^3+1)/(y^3+1))/((-y^3)^(1/6)*(y^3+1)^(1/3)*GAMMA(2/3))

 


For me, the original result is "simpler". (Not only smaller leaf count, but it has one special function, vs. two: Legendre and Gamma). But may be Maple considers hypergeom always more "complex" than any other?

That is why I use simplify(expr,size) because I am scared of simplify without any option, as I have little idea how it decides which is simpler.

Any thoughts from the experts on how Maple decided to simplify something when no option is used? What kinds of rules it uses to decide how to transform the expression?

Maple 2019.1

 

Download simplify.mw

I'm new to Maple.

My problem is that if I input the command sqrt(3.0), for example, I get this strange result:

1.81847767202745*10^(-58) + (7.53238114626421*10^(-59))*I

The results is the same, no matter the argument of sqrt.

Also, when using ln, I get this:

-265.745524189222 + 0.785398163397448*I

Again, no matter the argument of ln, the result is the same.

What is happening?

Hello Anybody can help me to write codes for PDE to solve by Galerkin finite element method or any other methods can be able to gain results? parameter omega is unknown and should be determined.

I attached a pdf file for more .

Thanks so much

fem2
 

"restart:  rho:=7850:  E:=0.193e12:  n:=1:  AD:=10:  upsilon:=0.291:   mu:=E/(2*(1+upsilon)):  l:=0:  lambda:=E*upsilon/((1+upsilon)*(1-2*upsilon)):  R:=2.5:  ii:=2:  J:=2:       m:=1:       `u__theta`(r,theta,phi):= ( V(r,theta))*cos(m*phi):  `u__r`(r,theta,phi):= ( U(r,theta))*cos(m*phi): `u__phi`(r,theta,phi):= ( W(r,theta))*sin(m*phi):  :        eq1:=(r (R+r cos(theta))^2 (mu+lambda) (((&PartialD;)^2)/(&PartialD;r&PartialD;theta) `u__theta`(r,theta,phi))+2 r^2 (mu+lambda/2) (R+r cos(theta))^2 (((&PartialD;)^2)/(&PartialD;r^2) `u__r`(r,theta,phi))+r^2 (mu+lambda) (R+r cos(theta)) (((&PartialD;)^2)/(&PartialD;phi&PartialD;r) `u__phi`(r,theta,phi))+mu (R+r cos(theta))^2 (((&PartialD;)^2)/(&PartialD;theta^2) `u__r`(r,theta,phi))+(((&PartialD;)^2)/(&PartialD;phi^2) `u__r`(r,theta,phi)) mu r^2-3 (R+r cos(theta))^2 (mu+lambda/3) ((&PartialD;)/(&PartialD;theta) `u__theta`(r,theta,phi))+2 r (mu+lambda/2) (R+2 r cos(theta)) (R+r cos(theta)) ((&PartialD;)/(&PartialD;r) `u__r`(r,theta,phi))-r^2 sin(theta) (mu+lambda) (R+r cos(theta)) ((&PartialD;)/(&PartialD;r) `u__theta`(r,theta,phi))-3 r^2 cos(theta) (mu+lambda/3) ((&PartialD;)/(&PartialD;phi) `u__phi`(r,theta,phi))-r mu sin(theta) (R+r cos(theta)) ((&PartialD;)/(&PartialD;theta) `u__r`(r,theta,phi))-2 (mu+lambda/2) (2 (cos(theta))^2 r^2+2 cos(theta) R r+R^2) `u__r`(r,theta,phi)+r `u__theta`(r,theta,phi) sin(theta) (3 r (mu+lambda/3) cos(theta)+R mu))/(r^2 (R+r cos(theta))^2):  eq2:=(2 (mu+lambda/2) (R+r cos(theta))^2 (((&PartialD;)^2)/(&PartialD;theta^2) `u__theta`(r,theta,phi))+r (R+r cos(theta))^2 (mu+lambda) (((&PartialD;)^2)/(&PartialD;r&PartialD;theta) `u__r`(r,theta,phi))+r (mu+lambda) (R+r cos(theta)) (((&PartialD;)^2)/(&PartialD;phi&PartialD;theta) `u__phi`(r,theta,phi))+r^2 mu (R+r cos(theta))^2 (((&PartialD;)^2)/(&PartialD;r^2) `u__theta`(r,theta,phi))+(((&PartialD;)^2)/(&PartialD;phi^2) `u__theta`(r,theta,phi)) mu r^2+3 (R+r cos(theta)) ((4 r (mu+lambda/2) cos(theta))/3+R (mu+lambda/3)) ((&PartialD;)/(&PartialD;theta) `u__r`(r,theta,phi))-2 r (mu+lambda/2) sin(theta) (R+r cos(theta)) ((&PartialD;)/(&PartialD;theta) `u__theta`(r,theta,phi))+r mu (R+2 r cos(theta)) (R+r cos(theta)) ((&PartialD;)/(&PartialD;r) `u__theta`(r,theta,phi))+3 r^2 sin(theta) (mu+lambda/3) ((&PartialD;)/(&PartialD;phi) `u__phi`(r,theta,phi))+(-3 r R (mu+lambda/3) cos(theta)+(-lambda-2 mu) r^2-R^2 mu) `u__theta`(r,theta,phi)-2 r (mu+lambda/2) sin(theta) R `u__r`(r,theta,phi))/(r^2 (R+r cos(theta))^2):  eq3:=(r (mu+lambda) (R+r cos(theta)) (((&PartialD;)^2)/(&PartialD;phi&PartialD;theta) `u__theta`(r,theta,phi))+r^2 (mu+lambda) (R+r cos(theta)) (((&PartialD;)^2)/(&PartialD;phi&PartialD;r) `u__r`(r,theta,phi))+mu (R+r cos(theta))^2 (((&PartialD;)^2)/(&PartialD;theta^2) `u__phi`(r,theta,phi))+r (r mu (R+r cos(theta))^2 (((&PartialD;)^2)/(&PartialD;r^2) `u__phi`(r,theta,phi))+2 r (mu+lambda/2) (((&PartialD;)^2)/(&PartialD;phi^2) `u__phi`(r,theta,phi))+(4 r (mu+lambda/2) cos(theta)+R (mu+lambda)) ((&PartialD;)/(&PartialD;phi) `u__r`(r,theta,phi))+mu (R+2 r cos(theta)) (R+r cos(theta)) ((&PartialD;)/(&PartialD;r) `u__phi`(r,theta,phi))-mu sin(theta) (R+r cos(theta)) ((&PartialD;)/(&PartialD;theta) `u__phi`(r,theta,phi))-r (3 sin(theta) (mu+lambda/3) ((&PartialD;)/(&PartialD;phi) `u__theta`(r,theta,phi))+`u__phi`(r,theta,phi) mu)))/(r^2 (R+r cos(theta))^2):  "

EQ1 := collect(eq1, cos(m*phi))/cos(m*phi)+rho*omega^2; EQ2 := collect(eq2, cos(m*phi))/cos(m*phi)+rho*omega^2; EQ3 := collect(eq3, sin(m*phi))/sin(m*phi)+rho*omega^2

(0.1788235818e12*r*(2.5+r*cos(theta))^2*(diff(diff(V(r, theta), r), theta))+0.2535718390e12*r^2*(2.5+r*cos(theta))^2*(diff(diff(U(r, theta), r), r))+0.1788235818e12*r^2*(2.5+r*cos(theta))*(diff(W(r, theta), r))+0.7474825716e11*(2.5+r*cos(theta))^2*(diff(diff(U(r, theta), theta), theta))-0.7474825716e11*U(r, theta)*r^2-0.3283200960e12*(2.5+r*cos(theta))^2*(diff(V(r, theta), theta))+0.2535718390e12*r*(2.5+2.*r*cos(theta))*(2.5+r*cos(theta))*(diff(U(r, theta), r))-0.1788235818e12*r^2*sin(theta)*(2.5+r*cos(theta))*(diff(V(r, theta), r))-0.3283200960e12*r^2*cos(theta)*W(r, theta)-0.7474825716e11*r*sin(theta)*(2.5+r*cos(theta))*(diff(U(r, theta), theta))-0.2535718390e12*(2.*cos(theta)^2*r^2+5.0*r*cos(theta)+6.25)*U(r, theta)+r*V(r, theta)*sin(theta)*(0.3283200960e12*r*cos(theta)+0.1868706429e12))/(r^2*(2.5+r*cos(theta))^2)+7850*omega^2

 

(0.2535718390e12*(2.5+r*cos(theta))^2*(diff(diff(V(r, theta), theta), theta))+0.1788235818e12*r*(2.5+r*cos(theta))^2*(diff(diff(U(r, theta), r), theta))+0.1788235818e12*r*(2.5+r*cos(theta))*(diff(W(r, theta), theta))+0.7474825716e11*r^2*(2.5+r*cos(theta))^2*(diff(diff(V(r, theta), r), r))-0.7474825716e11*V(r, theta)*r^2+3.*(2.5+r*cos(theta))*(0.1690478927e12*r*cos(theta)+0.2736000800e12)*(diff(U(r, theta), theta))-0.2535718390e12*r*sin(theta)*(2.5+r*cos(theta))*(diff(V(r, theta), theta))+0.7474825716e11*r*(2.5+2.*r*cos(theta))*(2.5+r*cos(theta))*(diff(V(r, theta), r))+0.3283200960e12*r^2*sin(theta)*W(r, theta)+(-0.8208002400e12*r*cos(theta)-0.2535718389e12*r^2-0.4671766072e12)*V(r, theta)-0.6339295976e12*r*sin(theta)*U(r, theta))/(r^2*(2.5+r*cos(theta))^2)+7850*omega^2

 

(-0.1788235818e12*r*(2.5+r*cos(theta))*(diff(V(r, theta), theta))-0.1788235818e12*r^2*(2.5+r*cos(theta))*(diff(U(r, theta), r))+0.7474825716e11*(2.5+r*cos(theta))^2*(diff(diff(W(r, theta), theta), theta))+r*(0.7474825716e11*r*(2.5+r*cos(theta))^2*(diff(diff(W(r, theta), r), r))-0.2535718390e12*r*W(r, theta)-1.*(0.5071436780e12*r*cos(theta)+0.4470589545e12)*U(r, theta)+0.7474825716e11*(2.5+2.*r*cos(theta))*(2.5+r*cos(theta))*(diff(W(r, theta), r))-0.7474825716e11*sin(theta)*(2.5+r*cos(theta))*(diff(W(r, theta), theta))-1.*r*(-0.3283200960e12*sin(theta)*V(r, theta)+0.7474825716e11*W(r, theta))))/(r^2*(2.5+r*cos(theta))^2)+7850*omega^2

(1)

#BCs can be from following
``
U(0, theta) = 0, (D[1](U))(0, theta) = 0, U(1, theta) = 0, (D[1](U))(1, theta) = 0

U(0, theta) = 0, (D[1](U))(0, theta) = 0, U(1, theta) = 0, (D[1](U))(1, theta) = 0

(2)

NULL
V(0, theta) = 0, (D[1](V))(0, theta) = 0, V(1, theta) = 0, (D[1](V))(1, theta) = 0
NULL
W(0, theta) = 0, (D[1](W))(0, theta) = 0, W(1, theta) = 0, (D[1](W))(1, theta) = 0
``

V(0, theta) = 0, (D[1](V))(0, theta) = 0, V(1, theta) = 0, (D[1](V))(1, theta) = 0

 

W(0, theta) = 0, (D[1](W))(0, theta) = 0, W(1, theta) = 0, (D[1](W))(1, theta) = 0

(3)

``


 

Download fem2

buchanan2005.pdf

 

 

So, I am trying to write a method for array interpolation. I have a Matrix that is X by 3, where each column holds specific data (column 1 holds independent data 1, column 2 holds independent data 2, column 3 holds dependent data).

This data comes from a function with 2 independent variables, and I am creating a graph of this function, basically, with both independent variables going from 0 to 1 (approximately 300 values per variable, giving me a matrix with 90k values already). My goal is to use interpolation to get a lot of values in between the points I already calculated.

That being said, I don't know how to use the ArrayInterpolation command to achieve this. I will post my code below if anyone can help me out!

Code:

Interpolate := proc(M::Matrix)
  local i; local j;
  local M1 := Matrix(RowDimension(M),1);
  local M2 := Matrix(RowDimension(M),1);
  local M3 := Matrix(RowDimension(M),1);
  for i from 1 to RowDimension(M) do
    M1(i) := M(i,1);
    M2(i) := M(i,2);
    M3(i) := M(i,3);
  end do;
  print(M1,M2,M3);
  local M4 := Matrix(1000,1);
  local M5 := Matrix(1000,1);
  for j from 1 to 1000 do
    M4(j,1) := 0.001*j;
    M5(j,1) := 0.001*j;
  end do;
  ArrayInterpolation([M1,M2],M3,[M4,M5]);
end proc;

Hello,

I'm confused about Maple's adjoint function (in the DEtools package). When I take the adjoint of the derivative operator:

DEtools:-adjoint(Dx, [Dx, x])

 

I get back simply "Dx". However, doing the calculation by hand and integrating by parts seems to indicate that this should return the negative of Dx. The inner product I'm using is int(f(x)*conjugate(g(x)), x=0..1). Is Maple perhaps using a different inner product? Or is this a generalization that I'm unaware of? Or is it perhaps just a bug?

 

Thanks!

If I do:

df:=DataFrame(Matrix(3,4,[seq(1..12)]), rows=[a,b,c],columns=[A,B,C,D]);Tabulate(df, width=100)

 

The font that Maple uses for the Tablulate is much larger than the font used to display the Dataframe. How does one choose the font size that Tabluate() uses? 

Peter

1 2 3 4 5 6 7 Last Page 2 of 19