Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hello! Prompt please as in Maple can determine the distribution function of the resulting histogram distribution? I know about cdf function, but how to act in relation to the histogram do not know.

Histogram:

restart;
with(stats);
with(stats[statplots]);
data2 := [30, 30.5, 31, 31.5, 32, 32.5, 32.6, 33, 33.1, 33.3, 33.6, 34, 35, 36];
histogram(data2, area = count);

In other words, I need smoothing the histogram, get graph and get on it to obtain an analytical expression.

Aslam o Alikum!

Hope everyone going fine with sound health I want to make the graph of following system of ODEs

Eq1 := diff(F(eta), eta, eta, eta, eta)-M*(eta*(diff(F(eta), eta, eta, eta))+3*(diff(F(eta), eta, eta))+(diff(F(eta), eta))*(diff(F(eta), eta, eta))-F(eta)*(diff(F(eta), eta, eta, eta)))-Ha^2*(diff(F(eta), eta, eta));
Eq2 := diff(G(eta), eta, eta)+Pr*M*(F(eta)*(diff(G(eta), eta))-eta*(diff(G(eta), eta)))+Pr*Ec*(diff(F(eta), eta, eta))^2+Nb*(diff(H(eta), eta))+diff(G(eta), eta)+Nt*(diff(G(eta), eta))^2;
Eq3 := diff(H(eta), eta, eta)+M*Sc*(F(eta)*(diff(H(eta), eta))-eta*(diff(H(eta), eta)))+Nt*(diff(F(eta), eta, eta))/Nb;
 

using the BC's

IC1 := F(0) = 0, ((D@@2)(F))(0) = 0, (D(G))(0) = 0, (D(H))(0) = 0;
     F(0) = 0, @@(D, 2)(F)(0) = 0, D(G)(0) = 0, D(H)(0) = 0
IC2 := F(1) = 1, (D(F))(1) = 0, G(1) = 1, H(1) = 1;
 

for Ec := .1; Nt := .1; Nb := .1; Sc := .5; Pr := 10; M := .5; and different values of Ha like Ha:=0, Ha:=2, Ha:=4, Ha:=6 and Ha:=8 in one coordinate. 

I am waiting your positive response.


Hello all, first time posting on here so if I make any mistakes please let me know. So I have created a function called "g" and plotted it on a graph. After looking at the two graphs I have plotted (one with discont=false and one with discont=true), I can see 3 discontinuities are present. However, attempting to solve for these discontinuities by setting the denominator of "g" = 0 only returns 1 of the points. I'm not sure why this is happening and how would I go by solving for the other 2 points? Thank you.

f := exp(x-188.5)-4*x^2+1507.964*x-142122.3+cos(x)^2;

exp(x-188.5)-4*x^2+1507.964*x-142122.3+cos(x)^2

(1)

g := (-f+x^2-376.991*x+35530.6)/(f+x^2-376.991*x+35530.6);

(-exp(x-188.5)+5*x^2-1884.955*x+177652.9-cos(x)^2)/(exp(x-188.5)-3*x^2+1130.973*x-106591.7+cos(x)^2)

(2)

``

plot(g, x = 186 .. 194, y = -25 .. 25,discont=false)

 

plot(g, x = 186 .. 194, y = -25 .. 25,discont=true)

 

vasymp := fsolve( denom(g)=0);

192.2026966

(3)

``

Dear all,

My script has multiple animations, in which the range of the variable is larger then I wish to see. Therefore, I have used the view=[x1..x2,y1..y2] command, which has different values for every plot. Plotted seperately, this gives me exactly what I want. However, if I combine the plots using display(A,B,C) they loose their individual views. Instead, maple chooses the view of plot A, and plots B an C in the range defined by view A. 

Is there a way to combine plots and still maintain individual views, within the largest view?

Kind regards,
Bastiaan Overdorp

Am trying to valid a research work done by kuiken(1968)

Kuiken_(1968).pdf

where we have this two eauations:

restart;
Digits := 35;
with(ODETools);
with(student);
with(plots);
inf := 4;
equ1 := diff(f[0](eta), `$`(eta, 3))+theta[0](eta);
equ2 := diff(theta[0](eta), `$`(eta, 2))+3*f[0](eta)*(diff(theta[0](eta), eta));
Bcs1 := f[0](0) = 0, (D(f[0]))(0) = 0, theta[0](0) = 1, theta[0](inf) = 0, (D(D(f[0])))(inf) = 0;
S1 := dsolve({Bcs1, equ1, equ2}, {f[0](eta), theta[0](eta)}, type = numeric, method = bvp[midrich]);
proc(x_bvp)  ...  end;
S1(0);
[                            d                   
[eta = 0., f[0](eta) = 0., ----- f[0](eta) = 0., 
[                           deta                 

    d   /  d            \                                          
  ----- |----- f[0](eta)| = 0.82449782146165697398999365896678734, 
   deta \ deta          /                                          

  theta[0](eta) = 1.0000000000000000000000000000000000, 

    d                                                         ]
  ----- theta[0](eta) = -0.71098574970825563256340736114251047]
   deta                                                       ]
S1(inf);
[                                                            
[eta = 4., f[0](eta) = 1.7815670728545914261072119522795076, 
[                                                            

    d                                                      
  ----- f[0](eta) = 0.51061876174095320088291844433043562, 
   deta                                                    

    d   /  d            \                           
  ----- |----- f[0](eta)| = 0., theta[0](eta) = 0., 
   deta \ deta          /                           

    d                                                             
  ----- theta[0](eta) = -0.000054818176138173095945902421930470836
   deta                                                           

  ]
  ]
  ]
 

 

Pls, I need to find the function of the limit of f[0](eta) at eta tend to infinity. checked equation 45 of the attached document and for the two equation pls checked equation 36 and 37 for the ODE equation solved above.

Kuiken_solution for equation 36 and 37.pdf

Is it possible to animate plot like this parametically:
animate(plot, [[cos(t), sin(t), t = 0 .. A]], A = 0 .. 2*Pi, scaling = constrained, frames = 50)

however given the x and y components as solutions of an implicit equation.

I know I could run RootOf. But it seems that there is a part missing due to a branch cut :-/

What do people find a good screen size is? 

Personally I find two monitors would be ideal for using Maple and especially Maplesim.  I'm going to be adding a second monitor, probably a 20".  Maybe 24" is better?  I think 20" would be enough.  Just wondering how many monitors people out there work with and their monitor sizes.

After changing the time and date on my computer, I get a message saying “Invalid or missing license file.” whenever I try to open Maple. I have tried activating it with my license code. It then gives me a message saying “Activation succesful! Please restart Maple for the new license file to take effect.”. After opening it again, I will once again get the original message. I have also tried reinstalling it twice. One time with the file my school provides, and with a file from Maples website. I get the same error message no matter what I do. 

I haven't been able to access Maple for several weeks now, so I'm getting a bit behind in math class.

How should I go about fixing this?

Hi all,
I have a question about editing strings in Maple2016.
When I make a variable "DataName" which is as below in Maple worksheet,
DataName:=Array(["Data1","Data2","Data3"]):

I want to make the variable "DataSet" whose elements are as below.
DataSet:=[1="Data1",2="Data2",3="Data3"]

Of course I can type the elements of "DataSet", but if the number of DataName increases, it requires a lot of time to do that, so I want to make the "DataSet" by using general command so that I can obtain "DataSet" automatically.
I tried to use the command "cat", "||", "map", and so on... but I could not find how to do that.
Is there anyone who can solve this problem? Please let me know how to solve this problem. I appreciate any idea you may have.

Always thanks for the nice answer

hi..

is correct this answer for differential equations??

i think order of result should be in (10^6 or 10^9 or higher) range....

please check it

thanks

hpp.mw
 

restart

L := 100*10^(-9):

Eq1 := {-(1017/1600000000000000000000000000000000000000000)*(diff(w(x), x, x, x, x, x, x))+(26169/40000000000000000000000000)*(diff(w(x), x, x, x, x))-0.8325000000e-4*omega^2+1.560937500*10^(-21)*omega^2*(diff(w(x), x, x)), w(0) = 0, w(1/10000000) = 0, (D(w))(0) = 0, (D(w))(1/10000000) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1/10000000) = 0}:

sys := subs(omega^2 = omega2, Eq1);

{-(1017/1600000000000000000000000000000000000000000)*(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))+(26169/40000000000000000000000000)*(diff(diff(diff(diff(w(x), x), x), x), x))-0.8325000000e-4*omega2+0.1560937500e-20*omega2*(diff(diff(w(x), x), x)), w(0) = 0, w(1/10000000) = 0, (D(w))(0) = 0, (D(w))(1/10000000) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1/10000000) = 0}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y)), 10000000*(D(g1))(0) = 0, 10000000*(D(g1))(1) = 0, 100000000000000*((D@@2)(g1))(0) = 0, 100000000000000*((D@@2)(g1))(1) = 0, g1(0) = 0, g1(1) = 0}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y))}, {10000000*(D(g1))(0) = 0, 10000000*(D(g1))(1) = 0, 100000000000000*((D@@2)(g1))(0) = 0, 100000000000000*((D@@2)(g1))(1) = 0, g1(0) = 0, g1(1) = 0}

 

{g1(0) = 0, g1(1) = 0, (D(g1))(0) = 0, (D(g1))(1) = 0, ((D@@2)(g1))(0) = 0, ((D@@2)(g1))(1) = 0}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y), diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), diff(diff(diff(diff(g1(y), y), y), y), y), diff(diff(diff(g1(y), y), y), y), diff(diff(g1(y), y), y), diff(g1(y), y)}

 

{-(1017/1600000000000000000000000000000000000000000)*(diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x))+(26169/40000000000000000000000000)*(diff(diff(diff(diff(w(x), x), x), x), x))-0.8325000000e-4*omega2+0.1560937500e-20*omega2*(diff(diff(w(x), x), x))}

 

{-(5085/8)*(diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y))+6542250*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.8325000000e-4*omega2+0.1560937500e-6*omega2*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e-6*omega2+0.2455752212e-9*omega2*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e13*omega3+2455752212.*omega3*(diff(diff(g1(y), y), y))}

 

{diff(diff(diff(diff(diff(diff(g1(y), y), y), y), y), y), y) = 10292.62537*(diff(diff(diff(diff(g1(y), y), y), y), y))-0.1309734513e13*omega3+2455752212.*omega3*(diff(diff(g1(y), y), y)), g1(0) = 0, g1(1) = 0, (D(g1))(0) = 0, (D(g1))(1) = 0, ((D@@2)(g1))(0) = 0, ((D@@2)(g1))(1) = 0}

 

{((D@@3)(g1))(0), ((D@@3)(g1))(1), ((D@@4)(g1))(0), ((D@@4)(g1))(1), ((D@@5)(g1))(0), ((D@@5)(g1))(1)}

 

((D@@3)(g1))(0)

 

((D@@3)(g1))(1)

 

((D@@4)(g1))(0)

 

((D@@4)(g1))(1)

 

((D@@5)(g1))(0)

 

((D@@5)(g1))(1)

 

((D@@5)(g1))(1), ((D@@4)(g1))(0), ((D@@5)(g1))(0), ((D@@3)(g1))(1), ((D@@4)(g1))(1), ((D@@3)(g1))(0)

 

HFloat(-8.852947665097804e-24), HFloat(-8.991820290300328e-22), HFloat(8.852947665097804e-24), HFloat(-9.672787782157173e-20), HFloat(-8.991820290300328e-22), HFloat(9.672787782157165e-20)

(1)

sqrt(8.85294766509780*10^(-21)*10^19);

.2975390338

(2)

NULL


 

Download hpp.mw

 

staganation_point11.mw
 

``

restart

l := 1:

1

 

1.5

 

.5

 

[blue, green, red, yellow]

(1)

``

for j to nops(A) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); R3 := 2/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2)-M*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr*f(eta)*(diff(theta(eta), eta))-R2*pr*(diff(f(eta), eta))*theta(eta)+R3*(A[j]*(diff(f(eta), eta))+B*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L+b*((D@@2)(f))(0), (D(f))(20) = 1, theta(0) = 1+s*(D(theta))(0), theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol1, [eta, diff(f(eta), eta)], color = K[j], axes = boxed); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = normal) end do:

 

 

``

l := 1:

1

 

[0, 1, 1.5]

 

.5

 

[blue, green, red, yellow]

(2)

for j to nops(n1) do R4 := 2*n1[j]/(n1[j]+1); R5 := 2*p1/(n1[j]+1); R6 := 2/(n1[j]+1); sol2 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R4*(1-(diff(f(eta), eta))^2)-M1*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr1*f(eta)*(diff(theta(eta), eta))-R5*pr1*(diff(f(eta), eta))*theta(eta)+R6*(A1*(diff(f(eta), eta))+B1*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L1+b1*((D@@2)(f))(0), (D(f))(7) = 1, theta(0) = 1+s1*(D(theta))(0), theta(7) = 0], numeric, method = bvp); plots[odeplot](sol2, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol2, sol1, [[eta, diff(f(eta), eta)], [eta, diff(f(eta), eta)]], color = K1[j], axes = boxed); tplt[j] := plots[odeplot](sol2, [[eta, theta(eta)]], color = K1[j], axes = normal) end do; plots:-display([seq(fplt[j], j = 1 .. nops(n1))]); plots:-display([seq(tplt[j], j = 1 .. nops(n1))])

Error, (in plots/odeplot) invalid argument: sol1

 

 

 

``

``

sol1(0);

[eta = 0., f(eta) = 1.00000000000000044, diff(f(eta), eta) = .899599635987511914, diff(diff(f(eta), eta), eta) = -.200800728024976643, theta(eta) = 1.18657688243172332, diff(theta(eta), eta) = .373153764863445037]

(3)

sol1(.1)

[eta = .1, f(eta) = 1.08902313464617162, diff(f(eta), eta) = .881503890693141945, diff(diff(f(eta), eta), eta) = -.162309073227910134, theta(eta) = 1.22040489003745489, diff(theta(eta), eta) = .304232440930656767]

(4)

sol1(.2)

[eta = .2, f(eta) = 1.17641763749368966, diff(f(eta), eta) = .866916683092940898, diff(diff(f(eta), eta), eta) = -.130454301210374102, theta(eta) = 1.24759607023709362, diff(theta(eta), eta) = .240488988787701030]

(5)

sol1(.3)

[eta = .3, f(eta) = 1.19045803452309284, diff(f(eta), eta) = .579367537136023514, diff(diff(f(eta), eta), eta) = -.285675511621370782, theta(eta) = 1.18389221591022696, diff(theta(eta), eta) = .146013974567769960]

(6)

sol1(.4)

[eta = .4, f(eta) = 1.40000000000000034, diff(f(eta), eta) = 1.00000000000000022, diff(diff(f(eta), eta), eta) = -0.243774513041384287e-17, theta(eta) = .625958972186505536, diff(theta(eta), eta) = -.314549395236395634]

(7)

sol1(.5)

[eta = .5, f(eta) = 1.37026161183094430, diff(f(eta), eta) = .874752886901313142, diff(diff(f(eta), eta), eta) = .345911467377074400, theta(eta) = .432494259338694842, diff(theta(eta), eta) = -.382764248064397461]

(8)

sol1(.6)

[eta = .6, f(eta) = 1.36678221814533528, diff(f(eta), eta) = .771028661281065508, diff(diff(f(eta), eta), eta) = .407805382194403932, theta(eta) = .876413930517023876, diff(theta(eta), eta) = -.197648778495384870]

(9)

sol1(2)

[eta = 2., f(eta) = 2.66120522956795602, diff(f(eta), eta) = .991532161353848585, diff(diff(f(eta), eta), eta) = 0.251405465681268682e-1, theta(eta) = .635967939441598018, diff(theta(eta), eta) = -.144641270049362308]

(10)

``

``

``

 

``

``

NULL


 

Download staganation_point11.mw
 

``

restart

l := 1:

1

 

1.5

 

.5

 

[blue, green, red, yellow]

(1)

``

for j to nops(A) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); R3 := 2/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2)-M*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr*f(eta)*(diff(theta(eta), eta))-R2*pr*(diff(f(eta), eta))*theta(eta)+R3*(A[j]*(diff(f(eta), eta))+B*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L+b*((D@@2)(f))(0), (D(f))(20) = 1, theta(0) = 1+s*(D(theta))(0), theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol1, [eta, diff(f(eta), eta)], color = K[j], axes = boxed); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = normal) end do:

 

 

``

l := 1:

1

 

[0, 1, 1.5]

 

.5

 

[blue, green, red, yellow]

(2)

for j to nops(n1) do R4 := 2*n1[j]/(n1[j]+1); R5 := 2*p1/(n1[j]+1); R6 := 2/(n1[j]+1); sol2 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R4*(1-(diff(f(eta), eta))^2)-M1*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr1*f(eta)*(diff(theta(eta), eta))-R5*pr1*(diff(f(eta), eta))*theta(eta)+R6*(A1*(diff(f(eta), eta))+B1*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L1+b1*((D@@2)(f))(0), (D(f))(7) = 1, theta(0) = 1+s1*(D(theta))(0), theta(7) = 0], numeric, method = bvp); plots[odeplot](sol2, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol2, sol1, [[eta, diff(f(eta), eta)], [eta, diff(f(eta), eta)]], color = K1[j], axes = boxed); tplt[j] := plots[odeplot](sol2, [[eta, theta(eta)]], color = K1[j], axes = normal) end do; plots:-display([seq(fplt[j], j = 1 .. nops(n1))]); plots:-display([seq(tplt[j], j = 1 .. nops(n1))])

Error, (in plots/odeplot) invalid argument: sol1

 

 

 

``

``

sol1(0);

[eta = 0., f(eta) = 1.00000000000000044, diff(f(eta), eta) = .899599635987511914, diff(diff(f(eta), eta), eta) = -.200800728024976643, theta(eta) = 1.18657688243172332, diff(theta(eta), eta) = .373153764863445037]

(3)

sol1(.1)

[eta = .1, f(eta) = 1.08902313464617162, diff(f(eta), eta) = .881503890693141945, diff(diff(f(eta), eta), eta) = -.162309073227910134, theta(eta) = 1.22040489003745489, diff(theta(eta), eta) = .304232440930656767]

(4)

sol1(.2)

[eta = .2, f(eta) = 1.17641763749368966, diff(f(eta), eta) = .866916683092940898, diff(diff(f(eta), eta), eta) = -.130454301210374102, theta(eta) = 1.24759607023709362, diff(theta(eta), eta) = .240488988787701030]

(5)

sol1(.3)

[eta = .3, f(eta) = 1.19045803452309284, diff(f(eta), eta) = .579367537136023514, diff(diff(f(eta), eta), eta) = -.285675511621370782, theta(eta) = 1.18389221591022696, diff(theta(eta), eta) = .146013974567769960]

(6)

sol1(.4)

[eta = .4, f(eta) = 1.40000000000000034, diff(f(eta), eta) = 1.00000000000000022, diff(diff(f(eta), eta), eta) = -0.243774513041384287e-17, theta(eta) = .625958972186505536, diff(theta(eta), eta) = -.314549395236395634]

(7)

sol1(.5)

[eta = .5, f(eta) = 1.37026161183094430, diff(f(eta), eta) = .874752886901313142, diff(diff(f(eta), eta), eta) = .345911467377074400, theta(eta) = .432494259338694842, diff(theta(eta), eta) = -.382764248064397461]

(8)

sol1(.6)

[eta = .6, f(eta) = 1.36678221814533528, diff(f(eta), eta) = .771028661281065508, diff(diff(f(eta), eta), eta) = .407805382194403932, theta(eta) = .876413930517023876, diff(theta(eta), eta) = -.197648778495384870]

(9)

sol1(2)

[eta = 2., f(eta) = 2.66120522956795602, diff(f(eta), eta) = .991532161353848585, diff(diff(f(eta), eta), eta) = 0.251405465681268682e-1, theta(eta) = .635967939441598018, diff(theta(eta), eta) = -.144641270049362308]

(10)

``

``

``

 

``

``

NULL


 

Download staganation_point11.mw
 

``

restart

l := 1:

1

 

1.5

 

.5

 

[blue, green, red, yellow]

(1)

``

for j to nops(A) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); R3 := 2/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2)-M*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr*f(eta)*(diff(theta(eta), eta))-R2*pr*(diff(f(eta), eta))*theta(eta)+R3*(A[j]*(diff(f(eta), eta))+B*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L+b*((D@@2)(f))(0), (D(f))(20) = 1, theta(0) = 1+s*(D(theta))(0), theta(20) = 0], numeric, method = bvp); plots[odeplot](sol1, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol1, [eta, diff(f(eta), eta)], color = K[j], axes = boxed); tplt[j] := plots[odeplot](sol1, [[eta, theta(eta)]], color = K[j], axes = normal) end do:

 

 

``

l := 1:

1

 

[0, 1, 1.5]

 

.5

 

[blue, green, red, yellow]

(2)

for j to nops(n1) do R4 := 2*n1[j]/(n1[j]+1); R5 := 2*p1/(n1[j]+1); R6 := 2/(n1[j]+1); sol2 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R4*(1-(diff(f(eta), eta))^2)-M1*(diff(f(eta), eta)) = 0, diff(diff(theta(eta), eta), eta)+pr1*f(eta)*(diff(theta(eta), eta))-R5*pr1*(diff(f(eta), eta))*theta(eta)+R6*(A1*(diff(f(eta), eta))+B1*theta(eta)) = 0, f(0) = 1, (D(f))(0) = L1+b1*((D@@2)(f))(0), (D(f))(7) = 1, theta(0) = 1+s1*(D(theta))(0), theta(7) = 0], numeric, method = bvp); plots[odeplot](sol2, [eta, ((D@@2)(f))(eta)], color = red); fplt[j] := plots[odeplot](sol2, sol1, [[eta, diff(f(eta), eta)], [eta, diff(f(eta), eta)]], color = K1[j], axes = boxed); tplt[j] := plots[odeplot](sol2, [[eta, theta(eta)]], color = K1[j], axes = normal) end do; plots:-display([seq(fplt[j], j = 1 .. nops(n1))]); plots:-display([seq(tplt[j], j = 1 .. nops(n1))])

Error, (in plots/odeplot) invalid argument: sol1

 

 

 

``

``

sol1(0);

[eta = 0., f(eta) = 1.00000000000000044, diff(f(eta), eta) = .899599635987511914, diff(diff(f(eta), eta), eta) = -.200800728024976643, theta(eta) = 1.18657688243172332, diff(theta(eta), eta) = .373153764863445037]

(3)

sol1(.1)

[eta = .1, f(eta) = 1.08902313464617162, diff(f(eta), eta) = .881503890693141945, diff(diff(f(eta), eta), eta) = -.162309073227910134, theta(eta) = 1.22040489003745489, diff(theta(eta), eta) = .304232440930656767]

(4)

sol1(.2)

[eta = .2, f(eta) = 1.17641763749368966, diff(f(eta), eta) = .866916683092940898, diff(diff(f(eta), eta), eta) = -.130454301210374102, theta(eta) = 1.24759607023709362, diff(theta(eta), eta) = .240488988787701030]

(5)

sol1(.3)

[eta = .3, f(eta) = 1.19045803452309284, diff(f(eta), eta) = .579367537136023514, diff(diff(f(eta), eta), eta) = -.285675511621370782, theta(eta) = 1.18389221591022696, diff(theta(eta), eta) = .146013974567769960]

(6)

sol1(.4)

[eta = .4, f(eta) = 1.40000000000000034, diff(f(eta), eta) = 1.00000000000000022, diff(diff(f(eta), eta), eta) = -0.243774513041384287e-17, theta(eta) = .625958972186505536, diff(theta(eta), eta) = -.314549395236395634]

(7)

sol1(.5)

[eta = .5, f(eta) = 1.37026161183094430, diff(f(eta), eta) = .874752886901313142, diff(diff(f(eta), eta), eta) = .345911467377074400, theta(eta) = .432494259338694842, diff(theta(eta), eta) = -.382764248064397461]

(8)

sol1(.6)

[eta = .6, f(eta) = 1.36678221814533528, diff(f(eta), eta) = .771028661281065508, diff(diff(f(eta), eta), eta) = .407805382194403932, theta(eta) = .876413930517023876, diff(theta(eta), eta) = -.197648778495384870]

(9)

sol1(2)

[eta = 2., f(eta) = 2.66120522956795602, diff(f(eta), eta) = .991532161353848585, diff(diff(f(eta), eta), eta) = 0.251405465681268682e-1, theta(eta) = .635967939441598018, diff(theta(eta), eta) = -.144641270049362308]

(10)

``

``

``

 

``

``

NULL


 

Download staganation_point11.mw

 

in this program im trying to combine the result, but it showing some error can help me please

 

 

 

How can I sketch the angles such as Pi/6 , Pi/4 or 7Pi/6 and etc by Maple 18? In general, what is maple commend for sketching angles?

Hi

Here is my question: 

I have been trying to plot this on maple but i only get an ampry box

-arctan((2.m.x)/(1-x^2))

Simple as that... M is between 0 to 10

And x and y are supposed to fmbe from 0 to infinity(i dont know what to write for infinity so i give a large number like 2milions)

Am a post graduate student. am using maple as soft ware.. How can I create a 15 x 15 matrix in maple?

I have a data point set:

x_val:=<250,300,350,397,451,497,547,593,647,691,745,788,840,897>:
y_val:=<0,0.5,2,6.3,23.2,48.7,71.2,83.4,90.1,92.8,94.7,95.7,96.9,97.8>:

I want to make a least square fit using this difficult function:
 

function:=x->1-exp(-(k*exp(-(E/(8.314*873.15))*((873.15/x)-1)))*(0.026/350))

but both Statistics[Fit]:
 

with(Statistics):fit_nelog:=Fit(1-exp(-(k*exp(-(E/(8.314*873.15))*((873.15/x)-1)))*(0.026/350)),<x_val|y_val>,x,parameternames=[k,E],output=[parametervector,residualsumofsquares]);

and DirectSearch[DataFit]:

with(DirectSearch):fit_nelog2:=DataFit(1-exp(-(k*exp(-(E/(8.314*873.15))*((873.15/x)-1)))*(0.026/350)),x_val,y_val,x,method=cdos);


give wrong k,E parameters. The correct parameter values were obtained with Excel Solver:

k=27843.3551042397

E=68.4

The approximately correct parameters were fitted when using logarithm form of the function.
How can I obtain correct parameter values in Maple using given form of the function?

First 1029 1030 1031 1032 1033 1034 1035 Last Page 1031 of 2216