Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

restart;
lambda := 1;
                               1
mu := 1;
                               1
alpha := 1;
                               1
v := 2;
                               2
delta := 1;
                               1
m := 1;
                               1
d := 3;
                               3
l := 1;
                               1
omega := -(1/2)*a*lambda^2-a*m^2+2*a*mu*v-delta*l*m-(1/2)*delta*lambda^2+2*delta*mu*v-l^2*mu-(1/2)*lambda^2*mu+2*mu^2*v-2*a*mu-2*delta*mu-2*mu^2;
                            1      
                            - a + 1
                            2      
a[0] := ((2*d*v-2*d-lambda)*(1/2))*sqrt(2)*sqrt(gamma*(a+delta+mu))/gamma;
                    (1/2)                (1/2)
                 5 2      (gamma (a + 2))     
                 -----------------------------
                            2 gamma           
a[1] := 0;
                               0
a[2] := -(2*(1/2))*sqrt(2)*sqrt(gamma*(a+delta+mu))*(d^2*v-d^2-d*lambda+mu)/gamma;
                     (1/2)                (1/2)
                  7 2      (gamma (a + 2))     
                - -----------------------------
                              gamma            
Omega := lambda^2-4*mu*v+4*mu;
                               -3
H := (-lambda+sqrt(-Omega)*tan((1/2)*sqrt(-Omega)*xi))/(2*(v-1));
                  1   1  (1/2)    /1  (1/2)   \
                - - + - 3      tan|- 3      xi|
                  2   2           \2          /
u := a[0]+a[1]*(d+H)+a[2]/(d+H);
              (1/2)                (1/2)
           5 2      (gamma (a + 2))     
           -----------------------------
                      2 gamma           

                       (1/2)                (1/2)    
                    7 2      (gamma (a + 2))         
              - -------------------------------------
                      /5   1  (1/2)    /1  (1/2)   \\
                gamma |- + - 3      tan|- 3      xi||
                      \2   2           \2          //

eta := -l*y-m*x+omega*t;
                               /1      \  
                      -y - x + |- a + 1| t
                               \2      /  
u := a[0]+a[1]*(d+H)+a[2]/(d+H);
              (1/2)                (1/2)
           5 2      (gamma (a + 2))     
           -----------------------------
                      2 gamma           

                       (1/2)                (1/2)    
                    7 2      (gamma (a + 2))         
              - -------------------------------------
                      /5   1  (1/2)    /1  (1/2)   \\
                gamma |- + - 3      tan|- 3      xi||
                      \2   2           \2          //

f := diff(u, xi);
                                  /                      2\
       (1/2)                (1/2) |3   3    /1  (1/2)   \ |
    7 2      (gamma (a + 2))      |- + - tan|- 3      xi| |
                                  \4   4    \2          / /
    -------------------------------------------------------
                                                 2         
                  /5   1  (1/2)    /1  (1/2)   \\          
            gamma |- + - 3      tan|- 3      xi||          
                  \2   2           \2          //          
S := diff(u, xi);
                                  /                      2\
       (1/2)                (1/2) |3   3    /1  (1/2)   \ |
    7 2      (gamma (a + 2))      |- + - tan|- 3      xi| |
                                  \4   4    \2          / /
    -------------------------------------------------------
                                                 2         
                  /5   1  (1/2)    /1  (1/2)   \\          
            gamma |- + - 3      tan|- 3      xi||          
                  \2   2           \2          //          
xi := x+y-(-2*alpha*m-delta*l-delta*m-2*l*mu)*t;
                          x + y + 6 t
eq := (-omega-a*m*m-delta*l*m-mu*l*l)*u-(gamma*u*u)*u+(a+delta+mu)*S;
            /   (1/2)                (1/2)
/  3      \ |5 2      (gamma (a + 2))     
|- - a - 3| |-----------------------------
\  2      / |           2 gamma           
            |                             
            \                             

                 (1/2)                (1/2)          \         /
              7 2      (gamma (a + 2))               |         |
   - ------------------------------------------------| - gamma |
           /5   1  (1/2)    /1  (1/2)              \\|         |
     gamma |- + - 3      tan|- 3      (x + y + 6 t)|||         |
           \2   2           \2                     ///         \

     (1/2)                (1/2)
  5 2      (gamma (a + 2))     
  -----------------------------
             2 gamma           

                 (1/2)                (1/2)          \     
              7 2      (gamma (a + 2))               |     
   - ------------------------------------------------|^3 + 
           /5   1  (1/2)    /1  (1/2)              \\|     
     gamma |- + - 3      tan|- 3      (x + y + 6 t)|||     
           \2   2           \2                     ///     

                                                    /          
                          1                         |          
  ------------------------------------------------- |7 (a + 2) 
                                                  2 \          
        /5   1  (1/2)    /1  (1/2)              \\             
  gamma |- + - 3      tan|- 3      (x + y + 6 t)||             
        \2   2           \2                     //             

                              /                                 2
   (1/2)                (1/2) |3   3    /1  (1/2)              \ 
  2      (gamma (a + 2))      |- + - tan|- 3      (x + y + 6 t)| 
                              \4   4    \2                     / 

  \\
  ||
  ||
  //
value(%);
            /   (1/2)                (1/2)
/  3      \ |5 2      (gamma (a + 2))     
|- - a - 3| |-----------------------------
\  2      / |           2 gamma           
            |                             
            \                             

                 (1/2)                (1/2)          \         /
              7 2      (gamma (a + 2))               |         |
   - ------------------------------------------------| - gamma |
           /5   1  (1/2)    /1  (1/2)              \\|         |
     gamma |- + - 3      tan|- 3      (x + y + 6 t)|||         |
           \2   2           \2                     ///         \

     (1/2)                (1/2)
  5 2      (gamma (a + 2))     
  -----------------------------
             2 gamma           

                 (1/2)                (1/2)          \     
              7 2      (gamma (a + 2))               |     
   - ------------------------------------------------|^3 + 
           /5   1  (1/2)    /1  (1/2)              \\|     
     gamma |- + - 3      tan|- 3      (x + y + 6 t)|||     
           \2   2           \2                     ///     

                                                    /          
                          1                         |          
  ------------------------------------------------- |7 (a + 2) 
                                                  2 \          
        /5   1  (1/2)    /1  (1/2)              \\             
  gamma |- + - 3      tan|- 3      (x + y + 6 t)||             
        \2   2           \2                     //             

                              /                                 2
   (1/2)                (1/2) |3   3    /1  (1/2)              \ 
  2      (gamma (a + 2))      |- + - tan|- 3      (x + y + 6 t)| 
                              \4   4    \2                     / 

  \\
  ||
  ||
  //

simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion

Q := exp(I*(-y-x+((1/2)*a+1)*t))*((5/2)*sqrt(2)*sqrt(gamma*(a+2))/gamma-7*sqrt(2)*sqrt(gamma*(a+2))/(gamma*(5/2+(1/2)*sqrt(3)*tan((1/2)*sqrt(3)*(x+y+6*t)))));
                                /   (1/2)                (1/2)
     /  /         /1      \  \\ |5 2      (gamma (a + 2))     
  exp|I |-y - x + |- a + 1| t|| |-----------------------------
     \  \         \2      /  // |           2 gamma           
                                |                             
                                \                             

                   (1/2)                (1/2)          \
                7 2      (gamma (a + 2))               |
     - ------------------------------------------------|
             /5   1  (1/2)    /1  (1/2)              \\|
       gamma |- + - 3      tan|- 3      (x + y + 6 t)|||
             \2   2           \2                     ///
                                /   (1/2)                (1/2)
     /  /         /1      \  \\ |5 2      (gamma (a + 2))     
  exp|I |-y - x + |- a + 1| t|| |-----------------------------
     \  \         \2      /  // |           2 gamma           
                                |                             
                                \                             

                   (1/2)                (1/2)          \
                7 2      (gamma (a + 2))               |
     - ------------------------------------------------|
             /5   1  (1/2)    /1  (1/2)              \\|
       gamma |- + - 3      tan|- 3      (x + y + 6 t)|||
             \2   2           \2                     ///
plot3d(Re(Q), x = -40 .. -37, y = -40 .. -37, t = -10 .. 10);
 

Dear Maple friends~

Recently I am thinking a question about how to use Maple to prove an equation based on a known partial differential equationand its boundary conditions.

Although I can Prove it with hand computation ,it still has some difficulty and it will be really hard if its partial differential equation become more complex(As a matter of fact, it will happen).So I think of Maple and want to take advantage of computer.However,I get few ideas how to realize it .The details are as follows:

alias(u=u(x,t)):
pde:=diff(u,t)-diff(u,x$2,t)+4*u^2*diff(u,x)=3*u*diff(u,x)*diff(u,x$2)+u^2*diff(u,x$3);
N:=5;#actually N can be any positive integer!
bcs:=eval(u,x=-infinity)=0,seq(eval(diff(u,x$ha),x=-infinity)=0,ha=1..N),eval(u,x=infinity)=0,seq(eval(diff(u,x$ha),x=infinity)=0,ha=1..N);
E:=Int(u^4+2*u^2*diff(u,x)^2-diff(u,x)^4/3,x=-infinity..infinity);

#try to prove the following equation
diff(E,t)=0

The written proof is as follows:

Therfore,I submit such a problem and look forward your solutions and suggestions sincerely~

Hy everyone,

i'm writing a code wich ends with an Explore including multiple parameters (8) ; my problem is that if i want to change every parameter, elaborating time becames too long, because Maple evaluates every variation of every parameter every time.
I'm looking for something like a button, which works like this: when i change parameters in explore maple doesn't evaluate the function, and when i click the button maple evaluates one time all the changed parameters.

Any suggestion? 

Thanks in advance

Please help me for removing an error in my code.

Thank you


 

"   restart:     NL:=960:    LL:=4:      BB:=0.6 :  T:=16:    MM:=NL*(LL+1):          for  NC  from 0 by 1 to MM-1  do       S:=BB+(2*Pi*NC/T)*I;          powerFactor := 0.05 * (sqrt(2.0) - 1.202081528);     powerTerm := sqrt(S)*sqrt(49*S^(2)+280*S+800)/sqrt(S+4);       preFactor := 1/((exp(sqrt(2.0)*powerTerm/10.0)-1.0)*S);       XS(NC+1):= preFactor * ((-exp(-powerFactor*powerTerm) + exp(powerFactor*powerTerm)) * exp(sqrt(2.0)*powerTerm/20.0));    end  do;    for  timeCounter from 0 by 1 to  NL-1  do     totalTerm:=0;     for KK from 0 to NL-1 do        for L from 0 to LL do           Term1:=Re(XS(KK+L*NL+1))+I*(Im(XS(KK+L*NL+1)));           Term2:=exp((timeCounter*KK*2*Pi/NL)*I);           totalTerm:=totalTerm+Term1*Term2;        end do     end do     XT(timeCounter+1):=((2.0/T)*exp(BB*timeCounter*T/NL)*(-0.5*Re(XS(1))+Re(totalTerm)));     TT(timeCounter+1):=(timeCounter*T)/NL;         end do    "

Error, invalid loop statement termination

"   restart:    NL:=960:  LL:=4:  BB:=0.6 :  T:=16:    MM:=NL*(LL+1):       for NC  from 0 by 1 to MM-1  do     S:=BB+(2*Pi*NC/T)*I;    powerFactor := 0.05 * (sqrt(2.0) - 1.202081528);   powerTerm := sqrt(S)*sqrt(49*S^2+280*S+800)/sqrt(S+4);    preFactor := 1/((exp(sqrt(2.0)*powerTerm/10.0)-1.0)*S);     XS(NC+1):= preFactor * ((-exp(-powerFactor*powerTerm) + exp(powerFactor*powerTerm)) * exp(sqrt(2.0)*powerTerm/20.0));    end  do;    for timeCounter from 0 by 1 to NL-1  do  totalTerm:=0;     for KK from 0 to NL-1 do        for L from 0 to LL do  Term1:=Re(XS(KK+L*NL+1))+I*(Im(XS(KK+L*NL+1)));  Term2:=exp((timeCounter*KK*2*Pi/NL)*I);  totalTerm:=totalTerm+Term1*Term2;        end do     end do   XT(timeCounter+1):=((2.0/T)*exp(BB*timeCounter*T/NL)*(-0.5*Re(XS(1))+Re(totalTerm)));   TT(timeCounter+1):=(timeCounter*T)/NL;      end do    "

 

``

``


 

Download

 

Hello,

How I can write a code for the determination of Laplacian in a new form that is introduced in the maple code (First line).

Thank you.

FOR

Maple Worksheet - Error

Failed to load the worksheet //convert/FOR
 

Download FOR

 

 

How may I please use maple tools in communication engineering applications. May I please have any example model

Hi,

There seems to be an issue with pdsolve, which is similar to https://mapleprimes.com/questions/222498-Issues-With-Pdsolve.

pdsolve([diff(u(x, t), t) = diff(u(x, t), x, x), u(x, 0) = 1, u(0, t) = 0, u(2, t) = 0]); # works

pdsolve([diff(u(t, x), t) = diff(u(t, x), x, x), u(0, x) = 1, u(t, 0) = 0, u(t, 2) = 0]); # swapped arguments, works

pdsolve([diff(u(x, t), t) = diff(u(x, t), x, x), u(x, 0) = 1, u(-1, t) = 0, u(1, t) = 0]); # translate by -1, works

pdsolve([diff(u(t, x), t) = diff(u(t, x), x, x), u(0, x) = 1, u(t, -1) = 0, u(t, 1) = 0]); # swapped arguments and translate by -1, doesn't work

The solution for the last example doesn't incorporate the initial condition correctly, while it is the same as the third example (except for swapped arguments). Not sure if this is still a problem in Maple 2019, though.

restart;
with(Physics);
with(LinearAlgebra);
N := 4;


Cf := Matrix(6, 6, (z, p) -> C[z, p, 1], shape = symmetric);
sigma[1] := Vector(6, [sigma[1, 1, 1], sigma[2, 2, 1], sigma[3, 3, 1], sigma[1, 2, 1], sigma[1, 3, 1], sigma[2, 3, 1]]);
varepsilon[1] := Vector(6, [varepsilon[1, 1, 1], varepsilon[2, 2, 1], varepsilon[3, 3, 1], gamma[1, 2, 1], gamma[1, 3, 1], gamma[2, 3, 1]]);
sigma[1] := Cf . (varepsilon[1]);





for i from 2 to N do
    C[i] := Matrix(6, 6, (z, p) -> C[z, p, i], shape = symmetric);
    sigma[i] := Vector(6, [sigma[1, 1, i], sigma[2, 2, i], sigma[3, 3, i], sigma[1, 2, i], sigma[1, 3, i], sigma[2, 3, i]]);
    varepsilon[i] := Vector(6, [varepsilon[1, 1, i], varepsilon[2, 2, i], varepsilon[3, 3, i], gamma[1, 2, i], gamma[1, 3, i], gamma[2, 3, i]]);
    sigma[i] := (C[i]) . (varepsilon[i]);
end do;



B[1] := 0;

for i to N do
    Parameters(epsilon11c, C[1, 1, i], C[1, 2, i], C[2, 2, i], C[2, 3, i], R[i], A[i], B[i + 1], P);
end do;



g[1](r);
ux[1] := (x, r) -> epsilon[1][1]*x + g[1](r);
ur[1] := r -> A[1]*r + B[1]*1/r;
varepsilon[1][1] := epsilon11c;
varepsilon[1][2] := r -> (A[1]*r + B[1]*1/r)*1/r;
varepsilon[1][3] := r -> diff(ur[1](r), r);
varepsilon[1][3](R[2]);



for i from 2 to N - 1 do 
g[i](r); 
ux[i] := (x, r) -> epsilon[i][1]*x + g[i](r); 
ur[i] := r -> A[i]*r + B[i]*1/r; 
varepsilon[i][1] := epsilon11c; 
varepsilon[i][2] := r -> (A[i]*r + B[i]*1/r)*1/r; 
varepsilon[i][3] := r -> diff(ur[i](r), r); 
varepsilon[i][2](r); i;
end do;
i;
varepsilon[2][2](r);

Hi everyone,

 

I am currently writing a code on maple and I am finding difficulties in this section.

When I define the functions this way, the result I get from the loop "for" for varepsilon[i][2](r) is the same and doesnt depend on i value. I also tried to define it another way that would give me different results but I would end up with being unable to replace the variable "r" with its values (I would get r(R2)).

I would be grateful if you could advice me with this matter.

Thank you in advance.

How to do the partition of integer?
If I input:
>Partition(10,2)
then output is:
>[[1, 9], [2, 8], [3, 7], [4, 6],[5,5]]
-------------------------------------------------
"10" is the number that I want to part,and "2" means that there are "two" number's sum = 10
Sorry my Engilsh is not good,but I really need help.
no other restriction!!

Hi so the Maple 2017 software froze on the loading screen I have a MacBook Air 2018, I tried restarting my Mac but it says I have to Quit out of Maple 2017, however it isn't allowing me to do so, the software won't quit. Is there anyone that can help me out??? I would gladly appreciate it.

Hi everyone

 

Im new to MaplePrimes aswell as to Maple.

I have a task where i shoud plot the following shape (with a hole in the centre) using the plot3d function:

 

 

 

 

 

 

 

All i have accomplished in the last hours is the following file A1.0.mw:

As you can see i havent been able to get rid off the surface in the centre nor the spikes on the edge...
 

  • In order to fix the issue regarding the centre I assume I have to exclude the range -2..2 from x, but havent been able to do so.
  • Regarding the spikes on the edge Im honestly pretty much clueless why they appear in the first place.

 

After several hours of trying on my own, I really need your help please!

A1.0.mw
 

f := (x, y) -> ((((((x^2)+(y^2))^(1/2))-4))/(((((x^2)+(y^2))^(1/2))-2)*((((x^2)+(y^2))^(1/2))-6)))+15;
plot3d(f, -6..6, -sqrt(-x^2+36) .. sqrt(-x^2+36), grid=[400,400], view=0..30);

proc (x, y) options operator, arrow; ((y^2+x^2)^(1/2)-4)/(((y^2+x^2)^(1/2)-2)*((y^2+x^2)^(1/2)-6))+15 end proc

 

 

 


 

Download A1.0.mw
 

 

 

Hi,

I want to figure out if the Student license offered by Maplesoft for Maple 2019 is perpetual or is just lasts for a year? If it lasts for just 12 months, is there another license I should get which isn't as expensive as the full license? I need it for my personal research. 

restart;
Solve({(6*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2+12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]+(3*(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1]))*d = 0, (-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3)*d^6+(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2)*d^5+(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1])*d^4+(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0])*d^3+(-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-4*alpha^4*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2+beta*a[2])*d^2+(-4*alpha^2*k^2*lambda*mu*a[2]-24*L*alpha^2*a[0]*a[2]^2+k^2*lambda*mu*a[2]+6*L*a[0]*a[2]^2-6*a[0]*a[2]^2)*d+8*alpha^2*k^2*mu^2*a[2]-2*a[2]^3-2*k^2*mu^2*a[2]-8*L*alpha^2*a[2]^3+2*L*a[2]^3 = 0, (6*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^5+(5*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^4+(4*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d^3+(3*(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0]))*d^2+(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1])*d^3+(2*(-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-4*alpha^4*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2+beta*a[2]))*d+12*alpha^2*k^2*lambda*mu*a[2]-24*L*alpha^2*a[0]*a[2]^2-3*k^2*lambda*mu*a[2]+6*L*a[0]*a[2]^2-6*a[0]*a[2]^2+(-4*alpha^2*k^2*lambda^2*a[2]-8*alpha^2*k^2*mu*v*a[2]+8*alpha^2*k^2*mu*a[2]+k^2*lambda^2*a[2]+2*k^2*mu*v*a[2]-2*k^2*mu*a[2])*d = 0, (15*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^2+(5*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d+(3*(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]))*d+(3*(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1]))*d^2+8*alpha^2*k^2*mu*v*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]-4*alpha^4*a[1]+4*alpha^2*k^2*lambda^2*a[1]-8*alpha^2*k^2*mu*a[1]-2*k^2*mu*v*a[1]-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-k^2*lambda^2*a[1]+2*k^2*mu*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]+beta*a[1] = 0, (15*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^4+(10*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^3+(6*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d^2+(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1])*d^3+(3*(4*alpha^2*k^2*lambda*mu*a[1]-8*L*alpha^2*a[0]^3-48*L*alpha^2*a[0]*a[1]*a[2]-4*alpha^4*a[0]-k^2*lambda*mu*a[1]+2*L*a[0]^3+12*L*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]-2*a[0]^3-12*a[0]*a[1]*a[2]+beta*a[0]))*d+(3*(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1]))*d^2+(-12*alpha^2*k^2*lambda*v*a[2]+12*alpha^2*k^2*lambda*a[2]+3*k^2*lambda*v*a[2]-3*k^2*lambda*a[2])*d+8*alpha^2*k^2*mu*v*a[2]-6*a[0]^2*a[2]-6*a[1]*a[2]^2-4*alpha^4*a[2]+4*alpha^2*k^2*lambda^2*a[2]-8*alpha^2*k^2*mu*a[2]-2*k^2*mu*v*a[2]-24*L*alpha^2*a[0]^2*a[2]-24*L*alpha^2*a[1]*a[2]^2-k^2*lambda^2*a[2]+2*k^2*mu*a[2]+6*L*a[0]^2*a[2]+6*L*a[1]*a[2]^2-4*alpha^2*beta*a[2]+alpha^2*a[2]+beta*a[2] = 0, (20*(-8*L*alpha^2*a[1]^3+2*L*a[1]^3-2*a[1]^3))*d^3+(10*(-24*L*alpha^2*a[0]*a[1]^2+6*L*a[0]*a[1]^2-6*a[0]*a[1]^2))*d^2+(4*(-24*L*alpha^2*a[0]^2*a[1]-24*L*alpha^2*a[1]^2*a[2]-4*alpha^4*a[1]+6*L*a[0]^2*a[1]+6*L*a[1]^2*a[2]-4*alpha^2*beta*a[1]+alpha^2*a[1]-6*a[0]^2*a[1]-6*a[1]^2*a[2]+beta*a[1]))*d+(8*alpha^2*k^2*v^2*a[1]-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+4*k^2*v*a[1]-2*k^2*a[1])*d^3+(3*(4*alpha^2*k^2*lambda^2*a[1]+8*alpha^2*k^2*mu*v*a[1]-8*alpha^2*k^2*mu*a[1]-k^2*lambda^2*a[1]-2*k^2*mu*v*a[1]+2*k^2*mu*a[1]))*d+(3*(12*alpha^2*k^2*lambda*v*a[1]-12*alpha^2*k^2*lambda*a[1]-3*k^2*lambda*v*a[1]+3*k^2*lambda*a[1]))*d^2+(-8*alpha^2*k^2*v^2*a[2]+16*alpha^2*k^2*v*a[2]-8*alpha^2*k^2*a[2]+2*k^2*v^2*a[2]-4*k^2*v*a[2]+2*k^2*a[2])*d+4*alpha^2*k^2*lambda*v*a[2]+2*L*a[0]^3-4*alpha^4*a[0]-48*L*alpha^2*a[0]*a[1]*a[2]+4*alpha^2*k^2*lambda*mu*a[1]-4*alpha^2*k^2*lambda*a[2]-k^2*lambda*v*a[2]-k^2*lambda*mu*a[1]+12*L*a[0]*a[1]*a[2]+k^2*lambda*a[2]-8*L*alpha^2*a[0]^3-12*a[0]*a[1]*a[2]-4*alpha^2*beta*a[0]+alpha^2*a[0]+beta*a[0]-2*a[0]^3 = 0, 8*alpha^2*k^2*v^2*a[1]-8*L*alpha^2*a[1]^3-16*alpha^2*k^2*v*a[1]+8*alpha^2*k^2*a[1]-2*k^2*v^2*a[1]+2*L*a[1]^3+4*k^2*v*a[1]-2*k^2*a[1]-2*a[1]^3 = 0}, {alpha, a[0], a[1], a[2]});
     / /  /          2     3           3         3\  
Solve|{ 6 \-8 L alpha  a[1]  + 2 L a[1]  - 2 a[1] / d
     \ \                                             

               2          2                2              2
   - 24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] 

             2  2                         2  2            
   + 12 alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

        2                    2                 /       2  2  2   
   - 3 k  lambda v a[1] + 3 k  lambda a[1] + 3 \8 alpha  k  v  a[

               2  2                 2  2           2  2     
  1] - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

        2             2     \        /          2     3
   + 4 k  v a[1] - 2 k  a[1]/ d = 0, \-8 L alpha  a[1] 

             3         3\  6
   + 2 L a[1]  - 2 a[1] / d 

     /           2          2                2              2\  5   
   + \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / d  + 

  /           2     2                  2     2     
  \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \  4   /       2  2               
   - 6 a[1]  a[2] + beta a[1]/ d  + \4 alpha  k  lambda mu a[1]

              2     3             2               
   - 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

            4         2                          3
   - 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0] 

                                  2                  2     
   + 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

           3                                \  3   /
   - 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d  + \
           2     2                  2          2          4     
-24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]  - 4 alpha  a[2]

             2                     2          2          
   + 6 L a[0]  a[2] + 6 L a[1] a[2]  - 4 alpha  beta a[2]

          2              2                   2            \  2   
   + alpha  a[2] - 6 a[0]  a[2] - 6 a[1] a[2]  + beta a[2]/ d  + 

  /        2  2                            2          2
  \-4 alpha  k  lambda mu a[2] - 24 L alpha  a[0] a[2] 

      2                               2              2\  
   + k  lambda mu a[2] + 6 L a[0] a[2]  - 6 a[0] a[2] / d

            2  2   2              3      2   2     
   + 8 alpha  k  mu  a[2] - 2 a[2]  - 2 k  mu  a[2]

              2     3           3        /          2     3
   - 8 L alpha  a[2]  + 2 L a[2]  = 0, 6 \-8 L alpha  a[1] 

             3         3\  5
   + 2 L a[1]  - 2 a[1] / d 

       /           2          2                2              2\ 
   + 5 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / 

   4     /           2     2                  2     2     
  d  + 4 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \  3     /       2  2               
   - 6 a[1]  a[2] + beta a[1]/ d  + 3 \4 alpha  k  lambda mu a[1]

              2     3             2               
   - 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

            4         2                          3
   - 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0] 

                                  2                  2     
   + 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

           3                                \  2   /       2  2 
   - 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d  + \4 alpha  k  

        2               2  2                    2  2        
  lambda  a[1] + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

      2       2           2                2        \  3     /
   - k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d  + 2 \
           2     2                  2          2          4     
-24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2]  - 4 alpha  a[2]

             2                     2          2          
   + 6 L a[0]  a[2] + 6 L a[1] a[2]  - 4 alpha  beta a[2]

          2              2                   2            \  
   + alpha  a[2] - 6 a[0]  a[2] - 6 a[1] a[2]  + beta a[2]/ d

             2  2                            2          2
   + 12 alpha  k  lambda mu a[2] - 24 L alpha  a[0] a[2] 

        2                               2              2   /
   - 3 k  lambda mu a[2] + 6 L a[0] a[2]  - 6 a[0] a[2]  + \
        2  2       2               2  2          
-4 alpha  k  lambda  a[2] - 8 alpha  k  mu v a[2]

            2  2            2       2           2          
   + 8 alpha  k  mu a[2] + k  lambda  a[2] + 2 k  mu v a[2]

        2        \           /          2     3           3
   - 2 k  mu a[2]/ d = 0, 15 \-8 L alpha  a[1]  + 2 L a[1] 

           3\  2
   - 2 a[1] / d 

       /           2          2                2              2\       
   + 5 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / d + 3 

  /        2  2                         2  2            
  \12 alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

        2                    2            \       /       2  2  2 
   - 3 k  lambda v a[1] + 3 k  lambda a[1]/ d + 3 \8 alpha  k  v  

                 2  2                 2  2           2  2     
  a[1] - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

        2             2     \  2          2  2          
   + 4 k  v a[1] - 2 k  a[1]/ d  + 8 alpha  k  mu v a[1]

           2              2               4     
   - 6 a[0]  a[1] - 6 a[1]  a[2] - 4 alpha  a[1]

            2  2       2               2  2        
   + 4 alpha  k  lambda  a[1] - 8 alpha  k  mu a[1]

        2                       2     2     
   - 2 k  mu v a[1] - 24 L alpha  a[0]  a[1]

               2     2         2       2           2        
   - 24 L alpha  a[1]  a[2] - k  lambda  a[1] + 2 k  mu a[1]

             2                2               2          
   + 6 L a[0]  a[1] + 6 L a[1]  a[2] - 4 alpha  beta a[1]

          2                          /          2     3
   + alpha  a[1] + beta a[1] = 0, 20 \-8 L alpha  a[1] 

             3         3\  3
   + 2 L a[1]  - 2 a[1] / d 

        /           2          2                2              2\ 
   + 10 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / 

   2     /           2     2                  2     2     
  d  + 4 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \     /       2  2  2     
   - 6 a[1]  a[2] + beta a[1]/ d + \8 alpha  k  v  a[1]

             2  2                 2  2           2  2     
   - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

        2             2     \  3     /       2  2       2     
   + 4 k  v a[1] - 2 k  a[1]/ d  + 3 \4 alpha  k  lambda  a[1]

            2  2                    2  2        
   + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

      2       2           2                2        \       /   
   - k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d + 3 \12 

       2  2                         2  2            
  alpha  k  lambda v a[1] - 12 alpha  k  lambda a[1]

        2                    2            \  2   /
   - 3 k  lambda v a[1] + 3 k  lambda a[1]/ d  + \
        2  2  2                2  2                 2  2     
-8 alpha  k  v  a[2] + 16 alpha  k  v a[2] - 8 alpha  k  a[2]

        2  2           2             2     \  
   + 2 k  v  a[2] - 4 k  v a[2] + 2 k  a[2]/ d

            2  2                         3          4     
   + 4 alpha  k  lambda v a[2] + 2 L a[0]  - 4 alpha  a[0]

               2                         2  2               
   - 48 L alpha  a[0] a[1] a[2] + 4 alpha  k  lambda mu a[1]

            2  2                2              
   - 4 alpha  k  lambda a[2] - k  lambda v a[2]

      2                                         2            
   - k  lambda mu a[1] + 12 L a[0] a[1] a[2] + k  lambda a[2]

              2     3                              2          
   - 8 L alpha  a[0]  - 12 a[0] a[1] a[2] - 4 alpha  beta a[0]

          2                          3         /          2     3
   + alpha  a[0] + beta a[0] - 2 a[0]  = 0, 15 \-8 L alpha  a[1] 

             3         3\  4
   + 2 L a[1]  - 2 a[1] / d 

        /           2          2                2              2\ 
   + 10 \-24 L alpha  a[0] a[1]  + 6 L a[0] a[1]  - 6 a[0] a[1] / 

   3     /           2     2                  2     2     
  d  + 6 \-24 L alpha  a[0]  a[1] - 24 L alpha  a[1]  a[2]

            4                2                2     
   - 4 alpha  a[1] + 6 L a[0]  a[1] + 6 L a[1]  a[2]

            2                  2              2     
   - 4 alpha  beta a[1] + alpha  a[1] - 6 a[0]  a[1]

           2                 \  2   /        2  2              
   - 6 a[1]  a[2] + beta a[1]/ d  + \12 alpha  k  lambda v a[1]

             2  2                  2              
   - 12 alpha  k  lambda a[1] - 3 k  lambda v a[1]

        2            \  3     /       2  2               
   + 3 k  lambda a[1]/ d  + 3 \4 alpha  k  lambda mu a[1]

              2     3             2               
   - 8 L alpha  a[0]  - 48 L alpha  a[0] a[1] a[2]

            4         2                          3
   - 4 alpha  a[0] - k  lambda mu a[1] + 2 L a[0] 

                                  2                  2     
   + 12 L a[0] a[1] a[2] - 4 alpha  beta a[0] + alpha  a[0]

           3                                \       /       2  2 
   - 2 a[0]  - 12 a[0] a[1] a[2] + beta a[0]/ d + 3 \4 alpha  k  

        2               2  2                    2  2        
  lambda  a[1] + 8 alpha  k  mu v a[1] - 8 alpha  k  mu a[1]

      2       2           2                2        \  2   /
   - k  lambda  a[1] - 2 k  mu v a[1] + 2 k  mu a[1]/ d  + \
         2  2                         2  2            
-12 alpha  k  lambda v a[2] + 12 alpha  k  lambda a[2]

        2                    2            \  
   + 3 k  lambda v a[2] - 3 k  lambda a[2]/ d

            2  2                   2                   2
   + 8 alpha  k  mu v a[2] - 6 a[0]  a[2] - 6 a[1] a[2] 

            4               2  2       2     
   - 4 alpha  a[2] + 4 alpha  k  lambda  a[2]

            2  2              2          
   - 8 alpha  k  mu a[2] - 2 k  mu v a[2]

               2     2                  2          2
   - 24 L alpha  a[0]  a[2] - 24 L alpha  a[1] a[2] 

      2       2           2                   2     
   - k  lambda  a[2] + 2 k  mu a[2] + 6 L a[0]  a[2]

                  2          2                  2     
   + 6 L a[1] a[2]  - 4 alpha  beta a[2] + alpha  a[2]

                           2  2  2                 2     3
   + beta a[2] = 0, 8 alpha  k  v  a[1] - 8 L alpha  a[1] 

             2  2                 2  2           2  2     
   - 16 alpha  k  v a[1] + 8 alpha  k  a[1] - 2 k  v  a[1]

             3      2             2              3    \   
   + 2 L a[1]  + 4 k  v a[1] - 2 k  a[1] - 2 a[1]  = 0 }, 
                                                      /   

                           \
  {alpha, a[0], a[1], a[2]}|
                           /

Dear Users!

Hope you would be fine. I want to export .dat file from 2D plots in attached file. But facing some problem. Please have a look and try to fix it.

Many thanks

2._SP_alpha_varies.mw

Special request:

@Carl Love

@acer

@Kitonum

1 2 3 4 5 6 7 Last Page 1 of 1542