Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

It hangs are v(x) := for some reason.

NULL;

q := x -> v1*Dirac(x - a1) + v2*Dirac(x - a2) + v3*Dirac(x - a3);
NULL;

V := x -> -int(q(x), x = 0 .. x) + Ra + Rb*Dirac(x - L);
proc (x) options operator, arrow, function_assign; Units:-Simple\

  :-`+`(Units:-Simple:-`+`(Units:-Simple:-`-`(MTM:-int(q(x), x 

   = 0 .. x)), Ra), Units:-Simple:-`*`(Rb, Dirac(Units:-Simple:-\

  `+`(x, `-`(L))))) end proc


NULL;

M := x -> int(V(x), x = 0 .. x) + Ma + Mb*Dirac(x - L);
proc (x) options operator, arrow, function_assign; Units:-Simple\

  :-`+`(Units:-Simple:-`+`(MTM:-int(V(x), x = 0 .. x), Ma), 

   Units:-Simple:-`*`(Mb, Dirac(Units:-Simple:-`+`(x, 

   `-`(L))))) end proc


theta := x -> 1000000000000*(int(M(x), x = 0 .. x) + `θa` + `θb`*Dirac(x - L))/(E*S_mm);
proc (x) options operator, arrow, function_assign; Units:-Simple\

  :-`*`(Units:-Simple:-`+`(Units:-Simple:-`+`(MTM:-int(M(x), x 

   = 0 .. x), `θa`), Units:-Simple:-`*`(`θb`, 

   Dirac(Units:-Simple:-`+`(x, `-`(L))))), 1/(E*S_mm*10^(-12))) 

   end proc


v := x -> int(theta(x), x = 0 .. x);
proc (x) options operator, arrow, function_assign; MTM:-int(thet\

  a(x), x = 0 .. x) end proc


 

in most of the my problem i have to check a lot and a lot of parameters to find a good shape of plots and always i have issue with the parameter in most time i can't ploted how i can plot 3D and 2D  of the systems, i want something more clear than this which not make a problem like probably a singularity , there is any way for ploting ?please help

system-plots.mw

 

 

 

Having started learning Maple about a year ago as a beginner, and now having mastered my preferred area of ​​"ordinary differential equations" fairly independently, I'd like to explore "elliptic curves" in Maple. For practice, I've chosen two problems, for each of which I only know one solution:

y^2 = x^3  -51*x^2 + 867*x - 4792    (17;11)

y^2 - 2*y + 14 = 2*x^3 + 11*x^2 - 29*x - 17    (3;7)


My attempts using commands like "algcurves", "ThueSolve", and "parametrization" have failed. How does one approach such problems in Maple? I'm also particularly interested in the group-theoretically based graphical secant method.

(I'm familiar with the book by Silverman/Tate.)

in here the author say the mean variable are not be zero so it can be a number he set them free variable as shown and i just find the parameter except the mean parameters like (A[0],A[1],A[2],B[1],B[2]) and replaced but i don't know how ode will be zero after substitution? how he did that i can't apply for odetest

where is problem?

find_p-sin&cos.mw

also i try to get same result as paper did but my graph after substituion is so different also why?

results.mw

i am waiting  about 5-10 min to get result but if my equation not satisfy the solutions i have to  remove this model and find another one so  how i can handle this?

p-test.mw

I get this message:

Why is it not working using the menu?

When I use latex(expression) to convert my expression to latex, the latex output is missing a large portion of my expression. See attached maplesheet. I want latex( ) to output the complete expression. What is happening

incomplete_latex_output.mw

restart;
with(plots): Digits:= trunc(evalhf(Digits)); #generally a very efficient setting

# Here we solve a 1D problem in 3 regions. In each region, we have concentration and potential (c,phi) distributions,
# We first solve the unperturbed steady-state problem and then the linearized perturbation problem (which rely on the steady state).
# Each region is defined in x = 0..1, and the regions are connected by interface conditions that connect (c1(1),phi1(1)) to (c2(0),phi2(0))  and (c2(1),phi2(1)) to (c3(0),phi3(0))

Q:=10;   omega:=100;     J0:= 1.95;   # parameters

# The unperturbed steady-state

c1:=1-J0/2*x:               c3:=1-J0/2*(x-1):                   # concentration distributions in region 1 and 3    
c12:= eval(c1,x=1):        c32 := eval(c3,x=0):  
T1:=sqrt(Q^2+4*c12^2):     T3:=sqrt(Q^2+4*c32^2):           # the values of concentrations 1 and 3 at the interfaces with region 2
c21:=(T1-Q)/2:             c23:=(T3-Q)/2:                     # the values of concentration 2 at the interfaces with region 1 and 3 
I0:=fsolve(Q*i0/2/J0*ln((J0*T1-Q*i0)/(J0*T3-Q*i0))=(J0-T1+T3)/2,i0);   # the electrical current 
V:=(I0/J0+1)*ln(c32/c12)+ln((c21+Q)/(c23+Q))+(J0+2*c23-2*c21)/Q;     # the potential drop across the system 
c2:=solve(y-c21+Q*I0/2/J0*ln((Q*I0-Q*J0-2*J0*y)/(Q*I0-Q*J0-2*J0*c21))=-J0/2*x,y):  # concentration distribution in region 2 
phi1:=I0/J0*ln(c1)+V:   phi3:=I0/J0*ln(c3):                         # potential distribution in regions 1 and 3    
phi21:=I0/J0*ln(c12)+V-0.5*ln((c21+Q)/c21):    
phi2:=(2*c21-2*c2+Q*phi21-J0*x)/Q:      # potential distribution in region 2    

# The linearized problem 
# Unknowns: C11,C12,Phi11,Phi12,C21,C22,Phi21,Phi22,C31,C32,Phi31,Phi32,sigma1,sigma2 (sigma1 and sigma2 are constants along x)

#   Equations

# Region 1 Equations 

eq11 := omega*C11(x)-diff(diff(C12(x), x), x) = 0:                            
eqA1 := 2*c1*diff(Phi11(x), x)+2*(diff(phi1, x))*C11(x) = -sigma1: 
eq12 := omega*C12(x)+diff(diff(C11(x), x), x) = 0:                          
eqA2 := 2*c1*diff(Phi12(x), x)+2*(diff(phi1, x))*C12(x)=-sigma2:

 # Region 2 Equations 

eq21 := omega*C21(x)-diff(diff(C22(x), x)+Q/2*diff(Phi22(x), x), x)=0:      
eqB1 := 2*(c2+Q)*diff(Phi21(x), x)+2*(diff(phi2, x))*C21(x)=-sigma1:
eq22 :=  omega*C22(x)+diff(diff(C21(x), x)+Q/2*diff(Phi21(x), x), x) = 0:  
eqB2 := 2*(c2+Q)*diff(Phi22(x), x)+2*(diff(phi2, x))*C22(x)=-sigma2:

# Region 3 Equations 

eq31 := omega*C31(x)-diff(diff(C32(x), x), x)=0:                            
eqC1 := 2*c3*diff(Phi31(x), x)+2*(diff(phi3, x))*C31(x)=-sigma1:
eq32 := omega*C32(x)+diff(diff(C31(x), x), x) = 0:   
eqC2 := 2*c3*diff(Phi32(x), x)+2*(diff(phi3, x))*C32(x)=-sigma2:

EqSys := eq11, eq12, eq21, eq22, eq31, eq32, eqA1, eqA2, eqB1, eqB2, eqC1, eqC2;    # Equations system 

# Boundary conditions 

# Bcs at the outer ends of regions 1 and 3
Bc1 := C11(0) = 0, C12(0) = 0,  C31(1) = 0, C32(1) = 0, Phi11(0)=1, Phi12(0)=0, Phi31(1)=0, Phi32(1)=0:

# ECP continuity at the two interfaces (between region 1 and 2 and between 2 and 3) 
Intf1 := Phi21(0)-Phi11(1)=C11(1)/(eval(c1, x = 1))-C21(0)/(eval(c2, x = 0)+Q),
Phi22(0)-Phi12(1)=C12(1)/(eval(c1, x = 1))-C22(0)/(eval(c2, x = 0)+Q),
Phi21(0)-Phi11(1)=C21(0)/(eval(c2, x = 0))-C11(1)/(eval(c1, x = 1)),
Phi22(0)-Phi12(1)=C22(0)/(eval(c2, x = 0))-C12(1)/(eval(c1, x = 1)),
Phi21(1)-Phi31(0)=C31(0)/(eval(c3, x = 0))-C21(1)/(eval(c2, x = 1)+Q),
Phi22(1)-Phi32(0)=C32(0)/(eval(c3, x = 0))-C22(1)/(eval(c2, x = 1)+Q),
Phi21(1)-Phi31(0)=C21(1)/(eval(c2, x = 1))-C31(0)/(eval(c3, x = 0)),
Phi22(1)-Phi32(0)=C22(1)/(eval(c2, x = 1))-C32(0)/(eval(c3, x = 0)):

# Fluxes  continuity at the two interfaces (between region 1 and 2 and between 2 and 3)
Intf2 := (Q*sigma1+2*Q*D(phi2)(0)*C21(0))/(2*eval(c2, x = 0)+Q) = 2*D(C21)(0)-2*D(C11)(1),
(Q*sigma2+2*Q*D(phi2)(0)*C22(0))/(2*eval(c2, x = 0)+Q) = 2*D(C22)(0)-2*D(C12)(1),
(Q*sigma1+2*Q*D(phi2)(1)*C21(1))/(2*eval(c2, x = 1)+Q) = 2*D(C21)(1)-2*D(C31)(0),
(Q*sigma2+2*Q*D(phi2)(1)*C22(1))/(2*eval(c2, x = 1)+Q) = 2*D(C22)(1)-2*D(C32)(0): 

Bc := Bc1,Intf1,Intf2;

sys := {EqSys,Bc}:

sol1 := dsolve(sys, numeric, method=bvp[midrich],output = procedurelist);
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system
Sigma1 := subs(sol1, sigma1);
Sigma2 := subs(sol1, sigma2);
Cond := Sigma1(0)+I*Sigma2(0);
ZR := Re(1/Cond);
ZI := Im(1/Cond);
X:=ZR,-ZI;

I am trying to plot a contour graph for my problem for (psi) function in the particular boundary, and even though it's working, but the contour  plot is not appearing at the end. Could anyone help me with the code to get proper graph in the specified boundary. 

i have ploted the graph in python i got a plot similar to that i am trying maple but i am not able to plot it. could any one help me to solve.

contour_plots_error_in_wavey_flow.mw

In the current graph, the three curves appear close together and are hard to distinguish because of a scaling issue. How can we adjust the scale so that each line is clearly visible and separate?

restart

L1 := ((3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)-.35)*(3.000000000-(3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48))+(.9*(.5+(.6250000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)))*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))+.1408958333+(0.2430555555e-1*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)+0.207886905e-1)*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(3.000000000-(3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48))^2-(.1583333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48)+(.6200396825*(-.339960-(.5000000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)))*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)); L2 := ((3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48))+(.9*(.47+(.6250000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)))*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))+.1345516666+(0.2430555555e-1*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)+0.359077381e-1)*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48))^2-(.1583333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48)+(.6200396825*(-.364344-(.5000000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)))*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)); L3 := ((3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48))+(.9*(.47+(.6250000000*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)))*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))+.1344738889+(0.2430555555e-1*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)+0.369156746e-1)*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48))^2+(-.1949156746-(.3100198412*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))-(.1583333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48)

((3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)-.35)*(3.000000000-3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48))+.9*(.5+.6250000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))+.1408958333+0.2430555555e-1*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24)+0.207886905e-1)*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(3.000000000-3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48))^2-.1583333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)+.6200396825*(-.339960-.5000000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))

 

((3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48))+.9*(.47+.6250000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))+.1345516666+0.2430555555e-1*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24)+0.359077381e-1)*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48))^2-.1583333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)+.6200396825*(-.364344-.5000000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))

 

((3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48))+.9*(.47+.6250000000*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))+.1344738889+0.2430555555e-1*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24)+0.369156746e-1)*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48))^2+(-.1949156746-.3100198412*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))-.1583333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)

(1)

G2 := plot([L1, L2, L3], rho0 = 0 .. .8, color = ["#00FF00", "#00BC00", "#008000"], labels = [typeset(Typesetting:-mo("ρ", mathvariant = "bold"), "\n"), typeset("\n", Typesetting:-mo("Retailer profit", mathvariant = "bold", mathcolor = "black"))], labeldirections = ["horizontal", "vertical"], legend = [`#msubsup(mi("Pi"),mi("r"),mn("W"));`, `#msubsup(mi("Pi"),mi("r"),mn("D"));`, `#msubsup(mi("Pi"),mi("r"),mn("S"));`], axis[2] = [color = "#006000"])

 
 

``

Download Q_SEPERATE.mw

is work for some equation but sometime is make problem and again make it problem for me where is problem why the denominator of second equation still remain while i want to remove it i times by denominator but still not worked

in my orginal ode i did change the place diff(V(xi),xi)=Omega(xi) maybe make problem ...or not

like this equation but the equation is different

restart

with(PDEtools)

with(plots)

with(plots):

with(DEtools):

undeclare(prime, quiet)

with(LinearAlgebra)

declare(u(x, t), quiet); declare(U(xi), quiet); declare(V(xi), quiet); declare(Omega(xi), quiet)

ode := -(8*(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1]))*V(xi)*(diff(Omega(xi), xi))+(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*Omega(xi)^2+8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2 = 0

-8*(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])*V(xi)*(diff(Omega(xi), xi))+(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*Omega(xi)^2+8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2 = 0

(1)

NULL

raw := DEtools[convertsys]({ode}, {}, Omega(xi), xi, s, QP, QP)[1..2];

[[QP[1] = -(1/8)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*s[1]^2-8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2)/((1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])*V(xi))], [s[1] = Omega(xi)]]

(2)

Extract the denominator and scale the right hand sides by it

den:=denom(eval(QP[2],raw[1]));
raw_eta:=map(q->rhs(q)*den,raw[1]);

1

 

[-(1/8)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*s[1]^2-8*w^2*(-alpha[4]*V(xi)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*V(xi)-k)*alpha[2]*V(xi)^2)/((1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])*V(xi))]

(3)

Back to the real transformed variables, which are now in terms of eta.

rhs_eta := eval(raw_eta, {s[1] = phi(eta), s[2] = y(eta)})

[2*y(eta)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)*phi(eta), -(1/4)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*y(eta)^2-8*w^2*(-alpha[4]*phi(eta)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*phi(eta)-k)*alpha[2]*phi(eta)^2)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)/(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])]

(4)

Find equilibrium points - one is at the origin; the others are a complicated mess.

equilibria := [solve(rhs_eta, {phi(eta), y(eta)}, explicit)]; nops(%)

3

(5)

Eq 9.

de1 := diff(phi(eta), eta) = rhs_eta[1]; de2 := diff(y(eta), eta) = rhs_eta[2]

diff(phi(eta), eta) = 2*y(eta)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)*phi(eta)

 

diff(y(eta), eta) = -(1/4)*(-(4*k^2*alpha[1]^2+1+(2*w^2*alpha[2]-4*k)*alpha[1])*y(eta)^2-8*w^2*(-alpha[4]*phi(eta)^2+k^2*alpha[1]+(1/2)*w^2*alpha[2]-alpha[3]*phi(eta)-k)*alpha[2]*phi(eta)^2)*(4*k^2*alpha[1]^2+2*w^2*alpha[1]*alpha[2]-4*k*alpha[1]+1)/(1/4+k^2*alpha[1]^2+((1/2)*w^2*alpha[2]-k)*alpha[1])

(6)

PDEtools:-ConservedCurrents({de1, de2}, [phi(eta), y(eta)]); P1 := -(1/2)*op(1, rhs(op(%)))

[_J[eta](eta, phi(eta), y(eta)) = f__1((1/3)*(2*w^2*alpha[2]*phi(eta)^4*alpha[4]+3*w^2*alpha[2]*phi(eta)^3*alpha[3]-6*(k^2*alpha[1]+(1/2)*w^2*alpha[2]-k)*alpha[2]*w^2*phi(eta)^2+3*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*y(eta)^2)/(((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*phi(eta)), (1/2)*3^(1/2)*Intat(1/((-96*(-(1/3)*w^2*alpha[2]*phi(eta)^4*alpha[4]-(1/2)*w^2*alpha[2]*phi(eta)^3*alpha[3]+(k^2*alpha[1]+(1/2)*w^2*alpha[2]-k)*alpha[2]*w^2*phi(eta)^2-_a*(k^2*alpha[1]+(1/2)*w^2*alpha[2]-(1/3)*_a^2*alpha[4]-(1/2)*_a*alpha[3]-k)*w^2*alpha[2]*phi(eta)-(1/2)*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*y(eta)^2)*_a*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)/phi(eta))^(1/2)*_a), _a = phi(eta))+eta)]

 

-(1/6)*(2*w^2*alpha[2]*phi(eta)^4*alpha[4]+3*w^2*alpha[2]*phi(eta)^3*alpha[3]-6*(k^2*alpha[1]+(1/2)*w^2*alpha[2]-k)*alpha[2]*w^2*phi(eta)^2+3*((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*y(eta)^2)/(((1/2)*w^2*alpha[1]*alpha[2]+(k*alpha[1]-1/2)^2)*phi(eta))

(7)

NULL

Download make_system.mw

We have just released updates to Maple and MapleSim.

Maple 2025.2 improvements include fixes to print layout, PDF export, tooltips for keyboard shortcuts, Plot Builder, and more. We recommend that all Maple 2025 users install this update. This update is available through Tools>Check for Updates in Maple, and is also available from the Maple 2025.2 download page, where you can find more details.

At the same time, we have also released an update to MapleSim, which includes enhanced tools for comparing models and analyzing simulation data, and improved runtime performance for MapleSim connectors.You can find more information on the MapleSim 2025.2 download page.

in here i have 4 equations and i want to find 4 parameter can anyone say where is problem?

NULL

restart

eq1 := S__1 = sqrt((-beta[1]+sqrt(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2))/beta[2]); eq2 := S__2 = (1/2)*sqrt(-(2*(beta[1]+sqrt(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)))/beta[2]); eq3 := S__3 = sqrt(2)*sqrt(chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))/(4*chi^2); eq4 := T__1 = sqrt(-2*chi*p)/(2*chi); eqs := {eq1, eq2, eq3, eq4}

S__1 = ((-beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2)

 

S__2 = (1/2)*(-2*(beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2)

 

S__3 = (1/4)*2^(1/2)*(chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))^(1/2)/chi^2

 

T__1 = (1/2)*(-2*chi*p)^(1/2)/chi

 

{S__1 = ((-beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), S__2 = (1/2)*(-2*(beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), S__3 = (1/4)*2^(1/2)*(chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))^(1/2)/chi^2, T__1 = (1/2)*(-2*chi*p)^(1/2)/chi}

(1)

indets(eqs)

{S__1, S__2, S__3, T__1, chi, k, p, w, beta[1], beta[2], (chi*(4*chi^2*k^2*p+4*chi^2*w+2*chi*p*beta[1]-p^2*beta[2]))^(1/2), ((-beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), (-2*chi*p)^(1/2), (-2*(beta[1]+(4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2))/beta[2])^(1/2), (4*k^2*p*beta[2]+4*w*beta[2]+beta[1]^2)^(1/2)}

(2)

We have 4 eqns, so choose 2  variables to solve for

eval(eqs, {S__1 = 1, S__2 = 1, S__3 = 1, T__1 = 1, k = 1, p = 1}); sol := solve(%, {chi, w, beta[1], beta[2]})

{1 = ((-beta[1]+(4*w*beta[2]+beta[1]^2+4*beta[2])^(1/2))/beta[2])^(1/2), 1 = (1/2)*(-2*(beta[1]+(4*w*beta[2]+beta[1]^2+4*beta[2])^(1/2))/beta[2])^(1/2), 1 = (1/2)*(-2*chi)^(1/2)/chi, 1 = (1/4)*2^(1/2)*(chi*(4*chi^2*w+4*chi^2+2*chi*beta[1]-beta[2]))^(1/2)/chi^2}

 

(3)
NULL

Download find-parameter.mw

in this equation i can't do phase portrait and visualization and invistagation of thus point are really not easy which i do a lot substitution for do more simplify but still not work, i want to do phase portrait for thus point but the parameter are too much and each time i have to determine my point which behavior have for each point i have to know the jacobian of them and each time i have to change the parameter to be biger or smaller than zero so i have to replace thus point to be something very easy like A or B  but i don't know how to do that i need an expert to help me , i did my best in file but i can't finished

f2.mw

I'm getting an error while executing the for loop after adding a constraint. Could you please help me identify and fix the syntax issue?

restart

C1 := (Cr*Pr*d*rho0-Cr*d*delta*rho0+Ce*d*delta+Cr*d*rho0-c*d*delta+d*delta*w-delta*g*i2-Ce*d+2*Pr*rho0+a*delta+c*d-d*w-2*delta*rho0+g*i2-a+2*rho0)/(rho0*(Cr*d+2)) <= Pn; C11 := Pn <= (Cr*Pr*d*upsilon-Cr*d*delta*upsilon+Ce*d*delta+Cr*d*upsilon-c*d*delta+d*delta*w-delta*g*i2-Ce*d+2*Pr*upsilon+a*delta+c*d-d*w-2*delta*upsilon+g*i2-a+2*upsilon)/(upsilon*(Cr*d+2))

(Cr*Pr*d*rho0-Cr*d*delta*rho0+Ce*d*delta+Cr*d*rho0-c*d*delta+d*delta*w-delta*g*i2-Ce*d+2*Pr*rho0+a*delta+c*d-d*w-2*delta*rho0+g*i2-a+2*rho0)/(rho0*(Cr*d+2)) <= Pn

 

Pn <= (Cr*Pr*d*upsilon-Cr*d*delta*upsilon+Ce*d*delta+Cr*d*upsilon-c*d*delta+d*delta*w-delta*g*i2-Ce*d+2*Pr*upsilon+a*delta+c*d-d*w-2*delta*upsilon+g*i2-a+2*upsilon)/(upsilon*(Cr*d+2))

(1)

`&Pi;m` := (Pn-Cn)*(1-(Pn-Pr)/(1-delta))+(Pr-w-Crm)*alpha*((((-a+0.4e-1*g)*Cr-c-(0.6e-1*alpha*d*rho0^2+2*d*delta*rho0-2*Pr*d*rho0+2*alpha*c*rho0^2-0.8e-1*alpha*g*rho0^2-2*a*d*delta+2*c*d^2*delta+2*Cn*d*rho0+0.3e-1*Cr*d^2*rho0^2-Cr*d^2*rho0+0.8e-1*d*delta*g+0.6e-1*d^2+0.3e-1*Cr*alpha*d^2*rho0^2+Cn*Cr*d^2*rho0-Cr*Pr*d^2*rho0+Cr*d^2*delta*rho0+2*Crm*alpha*d*rho0^2-2*Pr*alpha*d*rho0^2-2*alpha*c*d*rho0^2+Cr*Crm*alpha*d^2*rho0^2-Cr*Pr*alpha*d^2*rho0^2-Cr*alpha*c*d^2*rho0^2+Cr*alpha*c*d*rho0^2-0.4e-1*Cr*alpha*d*g*rho0^2-0.6e-1*d^2*delta+0.6e-1*d*rho0^2-0.8e-1*d*g-2*d*rho0+2*a*d-2*c*d^2)/(2*d*(Cr*alpha*d*rho0^2+2*alpha*rho0^2-d*delta+d))+0.3e-1)*d+0.4e-1*g-a)/(Cr*d+2)-0.4e-1*g+a)-(0.3e-1*(((-a+0.4e-1*g)*Cr-c-(0.6e-1*alpha*d*rho0^2+2*d*delta*rho0-2*Pr*d*rho0+2*alpha*c*rho0^2-0.8e-1*alpha*g*rho0^2-2*a*d*delta+2*c*d^2*delta+2*Cn*d*rho0+0.3e-1*Cr*d^2*rho0^2-Cr*d^2*rho0+0.8e-1*d*delta*g+0.6e-1*d^2+0.3e-1*Cr*alpha*d^2*rho0^2+Cn*Cr*d^2*rho0-Cr*Pr*d^2*rho0+Cr*d^2*delta*rho0+2*Crm*alpha*d*rho0^2-2*Pr*alpha*d*rho0^2-2*alpha*c*d*rho0^2+Cr*Crm*alpha*d^2*rho0^2-Cr*Pr*alpha*d^2*rho0^2-Cr*alpha*c*d^2*rho0^2+Cr*alpha*c*d*rho0^2-0.4e-1*Cr*alpha*d*g*rho0^2-0.6e-1*d^2*delta+0.6e-1*d*rho0^2-0.8e-1*d*g-2*d*rho0+2*a*d-2*c*d^2)/(2*d*(Cr*alpha*d*rho0^2+2*alpha*rho0^2-d*delta+d))+0.3e-1)*d+0.4e-1*g-a))/(Cr*d+2)+0.12e-2*g-0.3e-1*a

(Pn-Cn)*(1-(Pn-Pr)/(1-delta))+(Pr-w-Crm)*alpha*((((-a+0.4e-1*g)*Cr-c-(1/2)*(-0.8e-1*alpha*g*rho0^2+2*alpha*c*rho0^2+0.8e-1*d*delta*g+2*c*d^2*delta+0.6e-1*alpha*d*rho0^2-2*a*d*delta-Cr*d^2*rho0+0.3e-1*Cr*d^2*rho0^2+2*d*delta*rho0+2*Cn*d*rho0-2*Pr*d*rho0+2*a*d-2*c*d^2-0.6e-1*d^2*delta+0.6e-1*d*rho0^2-0.8e-1*d*g-2*d*rho0+0.6e-1*d^2+0.3e-1*Cr*alpha*d^2*rho0^2+Cn*Cr*d^2*rho0-Cr*Pr*d^2*rho0+Cr*d^2*delta*rho0+2*Crm*alpha*d*rho0^2-2*Pr*alpha*d*rho0^2-2*alpha*c*d*rho0^2+Cr*Crm*alpha*d^2*rho0^2-Cr*Pr*alpha*d^2*rho0^2-Cr*alpha*c*d^2*rho0^2+Cr*alpha*c*d*rho0^2-0.4e-1*Cr*alpha*d*g*rho0^2)/(d*(Cr*alpha*d*rho0^2+2*alpha*rho0^2-d*delta+d))+0.3e-1)*d+0.4e-1*g-a)/(Cr*d+2)-0.4e-1*g+a)-0.3e-1*(((-a+0.4e-1*g)*Cr-c-(1/2)*(-0.8e-1*alpha*g*rho0^2+2*alpha*c*rho0^2+0.8e-1*d*delta*g+2*c*d^2*delta+0.6e-1*alpha*d*rho0^2-2*a*d*delta-Cr*d^2*rho0+0.3e-1*Cr*d^2*rho0^2+2*d*delta*rho0+2*Cn*d*rho0-2*Pr*d*rho0+2*a*d-2*c*d^2-0.6e-1*d^2*delta+0.6e-1*d*rho0^2-0.8e-1*d*g-2*d*rho0+0.6e-1*d^2+0.3e-1*Cr*alpha*d^2*rho0^2+Cn*Cr*d^2*rho0-Cr*Pr*d^2*rho0+Cr*d^2*delta*rho0+2*Crm*alpha*d*rho0^2-2*Pr*alpha*d*rho0^2-2*alpha*c*d*rho0^2+Cr*Crm*alpha*d^2*rho0^2-Cr*Pr*alpha*d^2*rho0^2-Cr*alpha*c*d^2*rho0^2+Cr*alpha*c*d*rho0^2-0.4e-1*Cr*alpha*d*g*rho0^2)/(d*(Cr*alpha*d*rho0^2+2*alpha*rho0^2-d*delta+d))+0.3e-1)*d+0.4e-1*g-a)/(Cr*d+2)+0.12e-2*g-0.3e-1*a

(2)

DATA := [delta = .7, a = .2, d = .9, g = .3, c = 0.2e-1, sigma = .5, Cn = .35, Crm = .1, Cr = 0.1e-1, rho0 = .4, Pr = .6, alpha = .9, s = .21, upsilon = .95]

TRC := proc (Pn, w) options operator, arrow; eval(`&Pi;m`, DATA) end proc; C2 := subs(DATA, C1); C22 := subs(DATA, C11)

-.3359880537*Ce+.1119960179*i2-.3359880537*w+.8320557491 <= Pn

 

Pn <= -.1414686542*Ce+0.4715621807e-1*i2-.1414686542*w+.8713918944

(3)

C3 := isolate(C2, w); C33 := isolate(C22, w)

-.3359880537*w <= Pn+.3359880537*Ce-.1119960179*i2-.8320557491

 

w <= 6.159611112-7.068703704*Pn-.9999999999*Ce+.3333333333*i2

(4)

t := {0.3e-1, 0.5e-1, 0.7e-1, 0.9e-1}; ts := {0.4e-1, 0.8e-1, .12}

M := Matrix(nops(t)*nops(ts), 3); rr := 0; for Ce in t do for i2 in ts do C4 := eval(C3, [Ce = t, i2 = ts]); C44 := eval(C33, [Ce = t, i2 = ts]); s := Optimization:-Maximize(TRC(Pn, w), `union`(C4, C44), Pn = 0 .. 1, w = 0 .. 1, assume = nonnegative); stemp := s[1]; Pntemp := s[2][1]; wtemp := s[2][2]; rr := rr+1; M[rr, 1 .. 3] := `<|>`(Ce, i2, stemp); print(Ce, i2, stemp, Pntemp, wtemp) end do end do

Error, invalid input: `union` received -.3359880537*w <= Pn-.8264559482, which is not valid for its 1st argument

 

R := Array(ArrayTools:-Reshape(M,[3,4,3]),datatype=float[8]):

func := Interpolation:-SplineInterpolation([[0.04, 0.08, 0.12],[0.03, 0.05, 0.07, 0.09]],R[..,..,3]):

conts := [seq(min(R[..,..,3])..max(R[..,..,3]),(max(R[..,..,3])-min(R[..,..,3]))/8)];

[HFloat(0.0)]

(5)

``

 

ContoursWithLabels:= proc(

ContoursWithLabels(func(x, y), x = 0.3e-1 .. .15, y = 0.2e-1 .. .1, contours = conts, decplaces = 4, Coloring = [colorstyle = HUE, colorscheme = ["Blue", "Gold"], style = surface], TextOptions = [font = [HELVETICA, BOLD, 9], color = black], GraphicOptions = [thickness = 0], ImplicitplotOptions = [gridrefine = 3], size = [700, 600], labels = [':-C__e', ':-i__2'])

Download Q_Constraint_error.mw

1 2 3 4 5 6 7 Last Page 1 of 2230