Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

After calculations the integral contains infinity. what it resembles? Is it correct  answer?  Please check the file maple
 

restart

with(DifferentialGeometry):with(JetCalculus):NULL``

DGsetup([x, t], [u], E, 1):

``

 

 
E > 

(-3*t*u[1]^2*u[2]-t*u[2]^3+x*u[1]^3+3*x*u[1]*u[2]^2)*((-2*u[]^2+1)*(-u[1, 1]+u[2, 2])+2*u[]*(-u[1]^2+u[2]^2))/((u[1]-u[2])^3*(u[1]+u[2])^3)

(-3*t*u[1]^2*u[2]-t*u[2]^3+x*u[1]^3+3*x*u[1]*u[2]^2)*((-2*u[]^2+1)*(-u[1, 1]+u[2, 2])+2*u[]*(-u[1]^2+u[2]^2))/((u[1]-u[2])^3*(u[1]+u[2])^3)

(1.1)
E > 

``

E > 

A := evalDG((-3*t*u[1]^2*u[2]-t*u[2]^3+x*u[1]^3+3*x*u[1]*u[2]^2)*((-2*u[]^2+1)*(-u[1, 1]+u[2, 2])+2*u[]*(-u[1]^2+u[2]^2))*`&w`(Dx, Dt)/((u[1]-u[2])^3*(u[1]+u[2])^3))

_DG([["biform", E, [2, 0]], [[[1, 2], -(3*t*u[1]^2*u[2]+t*u[2]^3-x*u[1]^3-3*x*u[1]*u[2]^2)*(2*u[]^2*u[1, 1]-2*u[]^2*u[2, 2]-2*u[]*u[1]^2+2*u[]*u[2]^2-u[1, 1]+u[2, 2])/((u[1]-u[2])^3*(u[1]+u[2])^3)]]])

(1.2)
E > 

simplify(HorizontalHomotopy(A))

_DG([["biform", E, [1, 0]], [[[1], -t*(int(-infinity*(u[1]+u[2])*(1+(u[2, 2]+u[1, 1, 2]+u[1, 2, 2]+u[2]+u[1, 2])*_z1)*_z1*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*t*u[2]^6+(-3*_z1*x*u[1]-u[])*u[2]^5+3*_z1*((2/3)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^4-12*(-(1/6)*_z1*x*u[1]^2+(1/6)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[1]*u[2]^3+18*_z1*u[1]^2*(-(1/6)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^2-12*u[1]^3*(-(1/12)*_z1*x*u[1]^2-(1/4)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[2]+3*_z1*u[]*u[1]^4*(t*u[1, 1]+x*u[1, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+infinity*(u[1]+u[2])*_z1*(1+(u[1, 1, 2]+u[1, 2, 2]+u[1]+u[1, 1]+u[1, 2])*_z1)*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*x*u[1]^6+(-3*_z1*t*u[2]-u[])*u[1]^5+3*_z1*((2/3)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^4-12*u[2]*(-(1/6)*t*_z1*u[2]^2+(1/6)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[1]^3+18*_z1*u[2]^2*(-(1/6)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^2-12*(-(1/12)*t*_z1*u[2]^2-(1/4)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[2]^3*u[1]+3*_z1*u[]*u[2]^4*(t*u[1, 2]+x*u[2, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+6*(u[]*(u[1]^2-u[2]^2+u[]*(-u[1, 1]+u[2, 2]))*_z1^2-(1/2)*u[2, 2]+(1/2)*u[1, 1])*(t*u[1]^2*u[2]+(1/3)*t*u[2]^3-(1/3)*x*u[1]^3-x*u[1]*u[2]^2), _z1 = 0 .. 1))/((u[1]-u[2])^3*(u[1]+u[2])^3)-signum((t*u[2]^6+(-3*x*u[1]-u[])*u[2]^5+(2*t*u[1]^2+3*u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^4+(2*x*u[1]^3-2*u[]*u[1]^2-12*u[]*(t*u[1, 2]+x*u[1, 1])*u[1])*u[2]^3+18*(-(1/6)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[1]^2*u[2]^2+(x*u[1]^5+3*u[]*u[1]^4-12*u[]*(t*u[1, 2]+x*u[1, 1])*u[1]^3)*u[2]+3*u[]*u[1]^4*(t*u[1, 1]+x*u[1, 2]))/((u[1]-u[2])^4*(u[1]+u[2])^4))*infinity], [[2], x*(int(-infinity*(u[1]+u[2])*(1+(u[2, 2]+u[1, 1, 2]+u[1, 2, 2]+u[2]+u[1, 2])*_z1)*_z1*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*t*u[2]^6+(-3*_z1*x*u[1]-u[])*u[2]^5+3*_z1*((2/3)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^4-12*(-(1/6)*_z1*x*u[1]^2+(1/6)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[1]*u[2]^3+18*_z1*u[1]^2*(-(1/6)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^2-12*u[1]^3*(-(1/12)*_z1*x*u[1]^2-(1/4)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[2]+3*_z1*u[]*u[1]^4*(t*u[1, 1]+x*u[1, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+infinity*(u[1]+u[2])*_z1*(1+(u[1, 1, 2]+u[1, 2, 2]+u[1]+u[1, 1]+u[1, 2])*_z1)*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*x*u[1]^6+(-3*_z1*t*u[2]-u[])*u[1]^5+3*_z1*((2/3)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^4-12*u[2]*(-(1/6)*t*_z1*u[2]^2+(1/6)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[1]^3+18*_z1*u[2]^2*(-(1/6)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^2-12*(-(1/12)*t*_z1*u[2]^2-(1/4)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[2]^3*u[1]+3*_z1*u[]*u[2]^4*(t*u[1, 2]+x*u[2, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+6*(u[]*(u[1]^2-u[2]^2+u[]*(-u[1, 1]+u[2, 2]))*_z1^2-(1/2)*u[2, 2]+(1/2)*u[1, 1])*(t*u[1]^2*u[2]+(1/3)*t*u[2]^3-(1/3)*x*u[1]^3-x*u[1]*u[2]^2), _z1 = 0 .. 1))/((u[1]-u[2])^3*(u[1]+u[2])^3)-signum((x*u[1]^6+(-3*t*u[2]-u[])*u[1]^5+(2*x*u[2]^2+3*u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^4+(2*t*u[2]^3-2*u[]*u[2]^2-12*u[]*(t*u[2, 2]+x*u[1, 2])*u[2])*u[1]^3+18*(-(1/6)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[2]^2*u[1]^2+(t*u[2]^5+3*u[]*u[2]^4-12*u[]*(t*u[2, 2]+x*u[1, 2])*u[2]^3)*u[1]+3*u[]*(t*u[1, 2]+x*u[2, 2])*u[2]^4)/((u[1]-u[2])^4*(u[1]+u[2])^4))*infinity]]])

(1.3)
E > 

``

``

E > 

``

E > 

``


 

Download maple1.mw

1.mw maple1.pdf

Hi everybody, I have some programming difficulties on the maple, this is the algorithm and link article, hope everyone help me, please, thank you so much!!

Algorithm:

1: for Search every non-singular m × m matrix T with a few of XORs over F2. do

2: Find the minimum polynomial f(x) of T.

3: if f(x) = g(x)t(x) satisfying g(x) 6= 1, t(x) 6= 1 and g(x) is relatively prime with t(x). then

4: Find ri1(x), ri2 satisfying g(x)ri1 +t(x)ri2 = 1. Let pi1=g(x)ri1, pi2=t(x)ri2 = 1 . Sore pi1 and pi2.

5: end if

6: end for

7: for i from 1 to k. do

8: for Search a over F2[x]/(fi(x)). do

9: for Search b over F2[x]/(fi(x)). do

10: c = a + pi1(x), d = b + pi2.

11: if The circulant orthogonal matrix (a, b, c, d) is MDS. then

12: Store fi(x) and (a, b, c, d).

13: end if

14: end for

15: end for

16: end for

17: for Search every m × m non-singular matrix T with a few of XORs. do

18: for i from 1 to k. do

19: if fi(T) = 0. then

20: Substitute T into corresponding circulant orthogonal MDS matrix (a, b, c, d). Compute the sum of XORs of (a, b, c, d).

21: end if

22: end for

23: end for

Link: https://eprint.iacr.org/2017/371.pdf

i am trying to solve some equations ......but the comand f solve is not always work .i have two Question 
1:=is there any ather comand in maple solve the quations and looking for the answer in acetrtian region of real line other than f solve?

2:=iam trying to tell maple if you couldnt solve this equation assign another value of X as 
(if fsolve(Q[1])=Nill then X:=3;) but this comand desnt actually work in my loop

sol := dsolve([op(eqs), op(ICs)], numeric, range = 0 .. tmax, abserr = 10^(-3), relerr = 10^(-3), stiff = true, maxfun = 0);
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations
can any one tell how to remove this error?

How come there is an imaginary value in the result?

restart;

int(exp(-t)/(1-t), t = 0 .. infinity, CauchyPrincipalValue = true)

I am currently working on my Final Year project with the topic.


What Maple code can I use to compare shooting method result with the exact solutions and also plot the graph?

I have uploaded my sample questions BOUNDARY_VALUE_PROBLEMS.docx

Link to sample questions https://drive.google.com/open?id=1B9SKvcoiUw8tgFShqDwl_YHmh7If8oW0


I am grateful

I have this sum which should be equal to argument(GAMMA(I*x)) with x>0.

restart;

`assuming`([x*ln(n)-(1/2)*Pi-(sum(arctan(x/k), k = 1 .. n))], [x > 1]);

aG := `assuming`([limit(%, n = infinity)], [x > 1]);

`~`[evalf](eval([aG, argument(GAMMA(I*x))], x = 1))

 

However this limit evaluation is somehow broken in as it always gives some order symbol O(1) etc..

What is happening here?

Given a list with sublists e.g.

[[a,b],[[c,d,e]]]

is there a way of merging everything into a single list, for example

[a,b,c,d,e]

i have a problem when i try to re run my code by doing execute entire sheet, but when i first create it, it run without any errors
Thanks

Hi

I have a Vector of polynomials in x[1] and x[2]; and I want to use coeffs to get the coefficients of bothe elements of the Vector; using the command:

Eq2Coeffs := `~`[coeffs](%, [x[1], x[2]])

bizarely the result i get is something in terms of x[1] and x[2].

Here is the worksheet this problem emerged in, the specific command is 3.8.

Hi , 

I want to ask if there is any maple code of how to construct wavelet to solve fractional differential eqautions? Or any reference may be help me 

thanks 

Hi there!

I like to work with output labels, since it allows me to execute a lot of code without having to make sure the respective previous calculations already ran each time I open the file.

Say my output is a list, and has label (1.3), then I can address the 2nd element of that list by (1.3)[2].

Sometimes output is organised in cases, for example when solving for the root of an equation. How can I address a specific case of that output using the output’s label?

If the case specifier is simple enough I can do that with "assuming". But when it is more complicated it is quite cumbersome to do so.

Thanks for help!

In the following program why the first row of Matrix P is costant, while I expect it varies?


 

``

``

restart

with(LinearAlgebra):

MCK := Matrix(1, 1, {(1, 1) = 0.1627682387e-16*mu})

P := Matrix(2, 111):

`ρ__∞` := 1.225:

j := 1:

for `U__&infin;` from 333 to 335 do `M__&infin;` := `U__&infin;`/(331.2); mu := `&rho;__&infin;`*`U__&infin;`*(`M__&infin;`^2-2)/sqrt((`M__&infin;`^2-1)^3); P[1 .. 2, j] := `<,>`(`<,>`(MCK), `<,>`(j)); j := j+1 end do:

P[1, 1 .. j-1]

Vector[row]([0.1627682387e-16*mu, 0.1627682387e-16*mu, 0.1627682387e-16*mu])

(1)

``


 

Download Sooal.mw

here my problem i work on ;

i want maple to end the enternal loop if it can't solve the equation after  some iteration maple couldnt solve the equation and get stuck

 

with(LinearAlgebra); with(VectorCalculus); with(Student[LinearAlgebra]); with(SignalProcessing); with(Statistics); with(stats)

f[1] := n/R+sum(x[i], i = 1 .. n)-(sum((2+a[i])*x[i]*exp(R*x[i])/(exp(R*x[i])-1+Q), i = 1 .. n))

f[2] := m/S+sum(y[j], j = 1 .. m)-(sum((2+b[j])*y[j]*exp(y[j]*S)/(exp(y[j]*S)-1+Q), j = 1 .. m))

f[3] := (n+m+sum(a[i], i = 1 .. n)+sum(b[j], j = 1 .. m))/Q-(sum((2+a[i])/(exp(R*x[i])-1+Q), i = 1 .. n))-(sum((2+b[j])/(exp(y[j]*S)-1+Q), j = 1 .. m))

NULL

E1[1] := 0.5e-1

E2[1] := 0.5e-1

E3[1] := 0.5e-1

n := 45; m := 45

n := 45; m := 45

a := [seq(0, i = 1 .. 21), 2, 2, 1, seq(0, i = 1 .. 21)]; b := [seq(0, i = 1 .. 21), 2, 2, 1, seq(0, i = 1 .. 21)]

lambda1 := .9; lambda2 := .1; `&alpha;_&alpha;` := 5

K := 1000

so := 1; while so < K+1 do W := GenerateUniform(n, 0, 1); for iii to n do vv[iii] := W[iii]^(1/(iii+sum(a[jjj], jjj = n-iii+1 .. n))) end do; for sss to n do uu[sss] := 1-product(vv[n-jjj+1], jjj = 1 .. sss); x[sss] := fsolve(1-`&alpha;_&alpha;`/(exp(lambda1*t)-1+`&alpha;_&alpha;`) = uu[sss], t = 0 .. infinity) end do; U := GenerateUniform(m, 0, 1); for ii to m do v[ii] := U[ii]^(1/(ii+sum(b[jj], jj = m-ii+1 .. m))) end do; for ss to m do u[ss] := 1-product(v[m-jj+1], jj = 1 .. ss); y[ss] := fsolve(1-`&alpha;_&alpha;`/(exp(lambda2*t)-1+`&alpha;_&alpha;`) = u[ss], t = 0 .. infinity) end do; c := describe[quartile[1]]([seq(x[i], i = 1 .. n)]); cc := describe[quartile[3]]([seq(x[i], i = 1 .. n)]); L := describe[quartile[1]]([seq(y[i], i = 1 .. m)]); LL := describe[quartile[3]]([seq(y[i], i = 1 .. m)]); R[1] := fsolve(9*exp(R*c)-exp(R*cc) = 8, R = 0 .. infinity); S[1] := fsolve(9*exp(S*L)-exp(S*LL) = 8, S = 0 .. infinity); Q[1] := 3*(exp(R[1]*c)-1+(exp(S[1]*L)-1))*(1/2); for h to 40 while `and`(`and`(`and`(`and`(`and`(abs(E1[h]) > 0.5e-3, abs(E2[h]) > 0.5e-3), abs(E3[h]) > 0.5e-3), Q[h] > 2), S[h] > 0), R[h] > 0) do printlevel := 2; Q[h+1] := fsolve(eval(f[3], {R = R[h], S = S[h]}) = 0, Q = 0 .. infinity); S[h+1] := fsolve(eval(f[2], Q = Q[h+1]) = 0, S = 0 .. infinity); R[h+1] := fsolve(eval(f[1], Q = Q[h+1]) = 0, R = 0 .. infinity); if fsolve(eval(f[3], {R = R[h], S = S[h]}) = 0, Q = 0 .. infinity) = NULL then break end if; if fsolve(eval(f[2], Q = Q[h+1]) = 0, S = 0 .. infinity) = NULL then break end if; if fsolve(eval(f[1], Q = Q[h+1]) = 0, R = 0 .. infinity) = NULL then break end if; E1[h+1] := abs(R[h+1]-R[h]); E2[h+1] := abs(S[h+1]-S[h]); E3[h+1] := abs(Q[h+1]-Q[h]); KK := Matrix([[R[h]], [S[h]], [Q[h]]]) end do; A[so] := Determinant(KK[1]); B[so] := Determinant(KK[2]); C[so] := Determinant(KK[3]); so := so+1 end do

Error, cannot determine if this expression is true or false: 0 < K

 

NULL

NULL


 

Download Q3.mw

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hello to everyone!

 

I was trying to implement the following proc:
 

``

restart; with(plots); with(plottools)

"AngleSpectrum  :=  proc( theta )  local A, B, C, a1,a2,col,k,n;  n := floor(2*Pi/theta):  for k from 1 to n do      a1 := theta*(k-1);   a2 := theta*(k);      if( k mod 2 = 0) then col := COLOR(RGB,.8,.3,.5);      else col := COLOR(RGB,.4,.3,.5) ; fi;      A[k] := plottools[pieslice]([0,0], 1, a1..a2, color = col  ):      C[k] := textplot( [ evalf(1.2*cos(a2)), evalf(1.2*sin(a2)),                   convert(a2, string)]):  od:  display( seq( {A[k], C[k]}, k = 1..n), scaling=constrained);  end proc:"

Error, unterminated loop

"AngleSpectrum  := proc( theta )  local A, B, C, a1,a2,col,k,n;  n := floor(2*Pi/theta):  for k from 1 to n do   a1 := theta*(k-1); a2 := theta*(k);  if( k mod 2 = 0) then col := COLOR(RGB,.8,.3,.5);      else col := COLOR(RGB,.4,.3,.5) ; fi;  A[k] := plottools[pieslice]([0,0], 1, a1..a2, color = col  ):  C[k] := textplot( [ evalf(1.2*cos(a2)), evalf(1.2*sin(a2)),   convert(a2, string)]):  od:  display( seq( {A[k], C[k]}, k = 1..n), scaling=constrained);  end proc:"

 

``


Can anyone help me to figure out my mistake?

Download proc.mw

First 774 775 776 777 778 779 780 Last Page 776 of 2218