Question: Help resolving an error please

At the start of my program I specify values for the parameters beta, Q and P. These values are used in calculations in the program. At some stage I then get a list from which I make a selection of elements that have positive imaginary parts. To illustrate. Here I assigned beta := 3; Q:=100;P:=100.

This is my list.

t1a := [VectorCalculus[`*`](sqrt(VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi))), VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`-`](9), VectorCalculus[`*`](1439996, Pi^2)), VectorCalculus[`*`](VectorCalculus[`*`](4800, I), Pi^2)))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi)))), VectorCalculus[`*`](sqrt(VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi))), VectorCalculus[`+`](VectorCalculus[`+`](9, VectorCalculus[`-`](VectorCalculus[`*`](1439996, Pi^2))), VectorCalculus[`*`](VectorCalculus[`*`](4800, I), Pi^2))))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi)))), VectorCalculus[`-`](VectorCalculus[`*`](sqrt(VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi))), VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`-`](9), VectorCalculus[`*`](1439996, Pi^2)), VectorCalculus[`*`](VectorCalculus[`*`](4800, I), Pi^2)))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi))))), VectorCalculus[`-`](VectorCalculus[`*`](sqrt(VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi))), VectorCalculus[`+`](VectorCalculus[`+`](9, VectorCalculus[`-`](VectorCalculus[`*`](1439996, Pi^2))), VectorCalculus[`*`](VectorCalculus[`*`](4800, I), Pi^2))))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](1440004, Pi^2), 9), VectorCalculus[`-`](VectorCalculus[`*`](7200, Pi)))))];

I select from it.

> p1:=(beta,Q,P)->select(x->Im(evalf(eval(x,[beta=beta,Q=Q,P=P])))>0,t1a):

 t1:=p1(beta,Q,P);

 

and that works fine but when I try another list (below) it doesn’t work. Can anyone please advise me on how to fix this? Why does one list work and the other doesn’t ?

 

This is the other list

t1a := [VectorCalculus[`*`](sqrt(VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2)), VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), 9), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), VectorCalculus[`-`](VectorCalculus[`*`](359996, Pi^2))), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](2400, I), Pi^2)))))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2))), VectorCalculus[`*`](sqrt(VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2)), VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), 9), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), VectorCalculus[`-`](VectorCalculus[`*`](359996, Pi^2))), VectorCalculus[`*`](VectorCalculus[`*`](2400, I), Pi^2))))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2))), VectorCalculus[`-`](VectorCalculus[`*`](sqrt(VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2)), VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), 9), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), VectorCalculus[`-`](VectorCalculus[`*`](359996, Pi^2))), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](2400, I), Pi^2)))))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2)))), VectorCalculus[`-`](VectorCalculus[`*`](sqrt(VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2)), VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), 9), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), VectorCalculus[`-`](VectorCalculus[`*`](359996, Pi^2))), VectorCalculus[`*`](VectorCalculus[`*`](2400, I), Pi^2))))), 1/VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`+`](VectorCalculus[`*`](VectorCalculus[`*`](3600, cos(VectorCalculus[`*`](m, phi))), Pi), VectorCalculus[`-`](VectorCalculus[`*`](3600, Pi))), VectorCalculus[`*`](VectorCalculus[`*`](360000, cos(VectorCalculus[`*`](m, phi))^2), Pi^2)), 9), VectorCalculus[`-`](VectorCalculus[`*`](VectorCalculus[`*`](720000, cos(VectorCalculus[`*`](m, phi))), Pi^2))), VectorCalculus[`*`](360004, Pi^2))))];

 

I select from it.

> p1:=(beta,Q,P)->select(x->Im(evalf(eval(x,[beta=beta,Q=Q,P=P])))>0,t1a);

 t1:=p1(beta,Q,P);

 

using the same p1and it returns an error saying error in p1 selecting function must must return true or false. 

 

Otherwise how can I select elements with positive imaginary parts from the latter list ?

 

Please Wait...