Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Please help me

Maple gives me poor accuracy for simple arithmetic problems.

My calculator gives me 0.7 and 0.9 respectively.

I guess I could do evalf(convert(2.59/3.7,fraction)) = 0.7000000000

but this seems excessive.

Sup Brainiacs

I found this "solved" problem for backing rectangular items efficiently. The first example (without rotation of items).

https://www.researchgate.net/file.PostFileLoader.html?id=59938b635b49527571134c33&assetKey=AS%3A527790252490752%401502846410852

I think I have the constraints the same as the text, but I get different solutions. my questions are at the end of the worksheet. Thanks

I 2D_BP.mw

How does one look through the Maple 2017 help for a code structure. I have been looking for how to construct a While loop and I am not able to find any example that implements while loop nor the code structure for it.

Any help is appreciated.

Please, anyone with usefull informations to hint me. Looking forward to your favorable response. 

Thanking you in advance

Hello,

how could I force Maple to solve this pde

pdsolve(y*(diff(f(x, y, z, w), x))-x*(diff(f(x, y, z, w), y))+w*(diff(f(x, y, z, w), z))-z*(diff(f(x, y, z, w), w)) = 0)

When I hit enter, it happens nothing.

Matrix([[xx3[1,2],xx3[1,3]],[xx3[2,2],xx3[2,3]]])
Matrix(2, 2, {(1, 1) = (1/6)*sqrt(3)+(1/2)*I, (1, 2) = (1/6)*sqrt(3)-(1/2)*I, (2, 1) = (1/6)*sqrt(3)-(1/2)*I, (2, 2) = (1/6)*sqrt(3)+(1/2)*I})
expect output be
but these example are wrong
((1/6)*sqrt(3)+(1/2)*I)*Matrix([[1,-I].[-I,1]])
but these example are wrong
MatrixMatrixMultiply(Matrix([[(1/6)*sqrt(3),(1/2)],[(1/6)*sqrt(3),(1/2)]]),Matrix([[1,-I],[1,I]]));
concept like this output

How do you evaluate a function expression at given variable values?

f := 2*sin(x)-x^2/10.00:

eval(f, x = 5) gives 2*sin(5)-2.500000000

evalf(eval(f, x = 5)) gives -4.417848549

So is there a way we can just numerically calculate f(x) where x = 5?

Below is MAPLE code to simplify a series.  MAPLE expresses the result in terms of functions which many people are not familiar with.  Is there a way to express the answer in terms of more conventional functions expecially if N is a positive integer?


 

Cn := ((-I)*(1/2))*(2*(I*Pi*n*tau-(2*I)*Pi*n)*cos(Pi*n*tau/T)-T*(2*I)*sin(Pi*n*tau/T)+(4*I)*Pi*n)/(Pi^2*n^2); S4 := a[0]+sum(Cn*sin(2*Pi*n*x/T), n = 1 .. k); a[0] := 0; T := 4; tau := 2; Cn; S5 := unapply(S4, k, x); T := simplify(S5(N, x))

convert(T, StandardFunctions);

(-polylog(2, exp(-((1/2)*I)*Pi*(x-1)))*N^2-exp(-((1/2)*I)*Pi*N*(x+1))*LerchPhi(exp(-((1/2)*I)*(x+1)*Pi), 2, N)*N^2+polylog(2, exp(((1/2)*I)*(x+1)*Pi))*N^2+exp(-((1/2)*I)*Pi*N*(x-1))*LerchPhi(exp(-((1/2)*I)*Pi*(x-1)), 2, N)*N^2+polylog(2, exp(-((1/2)*I)*(x+1)*Pi))*N^2-exp(((1/2)*I)*Pi*N*(x+1))*LerchPhi(exp(((1/2)*I)*(x+1)*Pi), 2, N)*N^2-polylog(2, exp(((1/2)*I)*Pi*(x-1)))*N^2+exp(((1/2)*I)*Pi*N*(x-1))*LerchPhi(exp(((1/2)*I)*Pi*(x-1)), 2, N)*N^2+exp(((1/2)*I)*Pi*N*(x+1))-exp(((1/2)*I)*Pi*N*(x-1))+exp(-((1/2)*I)*Pi*N*(x+1))-exp(-((1/2)*I)*Pi*N*(x-1))-I*exp(-((1/2)*I)*x*Pi*N)*LerchPhi(exp(-((1/2)*I)*x*Pi), 1, N)*N^2*Pi-I*ln(1-exp(-((1/2)*I)*x*Pi))*N^2*Pi+I*exp(((1/2)*I)*x*Pi*N)*LerchPhi(exp(((1/2)*I)*x*Pi), 1, N)*N^2*Pi+I*ln(1-exp(((1/2)*I)*x*Pi))*N^2*Pi-I*exp(((1/2)*I)*x*Pi*N)*N*Pi+I*exp(-((1/2)*I)*x*Pi*N)*N*Pi)/(N^2*Pi^2)

(1)

``


 

Download simplify.mw

How can I specify curve of function  when drawing set of functions in  one plot ,( curve1, curve2,...) in Legend

When attempting to numerically solve for a function using fsolv it is possible that the function has multiple roots.  So to focus on a particular region you specify a range such as:

xmax := fsolve(S, x = 0 .. 1/2)

Is it possible fsolve may not resolve the solution due to the fact that delta x is not small enough or does fsolve autonomously adjust delta x in order to find the solution?  If not, how do you manually dictate the delta x for the interval specified?

Hello,

Could you please help me with the following problem? I'm new to Maple and I need some help.

Find the real solutions of the following system(it's a nonlinear system):

x^2 + y^2 + z^2 = 4

x + y + z = 0

x*sin(y*z) = -1

Request help in solving the equation:

Eq_H_1 := C[11*m]*(int((t-(j-1)*T)*alpha*(-alpha*(K*T*beta+T*beta*j-K*T-T*beta-T*j-beta*t+T+t))^(-beta/(beta-1))*exp(-R[m]*t), t = (j-1)*T .. (K+j-1)*T))

 

Thanks

Hello,

Could you please help me with the following problem? I'm new to Maple and i need some help.

Solve the equation x^3 - a*x + 1 = 0 , in x. Determine the particular solution for a=1,2,... .Graphically represent the polynom that appears in the equation, in a case where the equation has a real root and in a case where the equation has 3 real roots.

Thank you !

Hi

I d like to limit my solution to a real (non complex) solution
There should be a simple solution to my calculation but maple can t process the solutions in one of my "solve" commands.

How can do I tell maple to limit itself to one
 

NULL

restart

with(Student[Calculus1]):


#geometry [mm]

b := 250:

h := 720:

ds := 70:

d := h-ds:

As := 3000:


#concrete [MPa]

fck := 30:

fcm := fck+8;

38

(1)

Ecm := 33000;

33000

(2)

`ϵc1` := 2.2*(1/1000);

0.2200000000e-2

(3)

eta := `ϵc`/`ϵc1`;

454.5454545*`ϵc`

(4)

Ec1 := fck/`ϵc1`;

13636.36364

(5)

k := 1.05*Ecm/Ec1;

2.540999999

(6)

sigma := fcm*(-eta^2+eta*k)/(1+(k-2)*eta);

38*(-206611.5702*`ϵc`^2+1154.999999*`ϵc`)/(1+245.9090904*`ϵc`)

(7)


#steel [MPa]

Es := 200000:

fsy := 400:

fsu := 600:

`ϵy` := fsy/Es;

1/500

(8)

`ϵsh` := 0.9e-2:

`ϵsu` := 0.75e-1:

P := 4:

`ϵs` := `ϵcm`*(d-c)/c;

`ϵcm`*(650-c)/c

(9)

i := 1;

1

(10)

for `ϵcm` from .1*(1/1000) by .1*(1/1000) to 10*(1/1000) do `ϵs` := `ϵcm`*(d-c)/c; T[1] := `ϵs`*Es*As; T[2] := fsy*As; T[3] := (fsu+(fsy-fsu)*((`ϵsu`-`ϵs`)/(`ϵsu`-`ϵsh`))^P)*As; C := b*c*(int(sigma, `ϵc` = 0 .. `ϵcm`))/`ϵcm`; eq[1] := T[1] = C; `ϵl`[1] := `ϵy`; eq[2] := T[2] = C; `ϵl`[2] := `ϵsh`; eq[3] := T[3] = C; cc := max(solve(eq[1], c)); `ϵss` := subs(c = cc, `ϵs`); Ta := subs(c = cc, T[1]); if `ϵss` >= `ϵl`[1] then cc := max(solve(eq[2], c)); Ta := subs(c = cc, T[2]); `ϵss` := subs(c = cc, `ϵs`) end if; if `ϵss` >= `ϵl`[2] then cc := max(`assuming`([solve(eq[3], c, useassumptions)], [c::real])); Ta := subs(c = cc, T[3]); `ϵss` := subs(c = cc, `ϵs`) end if; M[i] := b*cc^2*fcm*(int(sigma*`ϵc`, `ϵc` = 0 .. `ϵcm`))*10^(-6)/`ϵcm`^2+T*(d-cc)*10^(-6); phi[i] := `ϵcm`/cc; cd[i] := cc/d; print(`ϵcm`, `ϵss`, Ta/As); i := i+1 end do

0.1000000000e-3, 0.1955232439e-3, 39.10464877

 

0.2000000000e-3, 0.3845102290e-3, 76.90204580

 

0.3000000000e-3, 0.5671741821e-3, 113.4348364

 

0.4000000000e-3, 0.7437144096e-3, 148.7428819

 

0.5000000000e-3, 0.9143174400e-3, 182.8634880

 

0.6000000000e-3, 0.1079158043e-2, 215.8316087

 

0.7000000000e-3, 0.1238400148e-2, 247.6800297

 

0.8000000000e-3, 0.1392197667e-2, 278.4395334

 

0.9000000000e-3, 0.1540695238e-2, 308.1390476

 

0.1000000000e-2, 0.1684028897e-2, 336.8057793

 

0.1100000000e-2, 0.1822326682e-2, 364.4653363

 

0.1200000000e-2, 0.1955709188e-2, 391.1418377

 

0.1300000000e-2, 0.2226921078e-2, 400

 

0.1400000000e-2, 0.2583745185e-2, 400

 

0.1500000000e-2, 0.2954159196e-2, 400

 

0.1600000000e-2, 0.3336139462e-2, 400

 

0.1700000000e-2, 0.3727768551e-2, 400

 

0.1800000000e-2, 0.4127227927e-2, 400

 

0.1900000000e-2, 0.4532791280e-2, 400

 

0.2000000000e-2, 0.4942818378e-2, 400

 

0.2100000000e-2, 0.5355749454e-2, 400

 

0.2200000000e-2, 0.5770100024e-2, 400

 

0.2300000000e-2, 0.6184456101e-2, 400

 

0.2400000000e-2, 0.6597469817e-2, 400

 

0.2500000000e-2, 0.7007855358e-2, 400

 

0.2600000000e-2, 0.7414385220e-2, 400

 

0.2700000000e-2, 0.7815886744e-2, 400

 

0.2800000000e-2, 0.8211238846e-2, 400

 

0.2900000000e-2, 0.8599369121e-2, 400

 

0.3000000000e-2, 0.8979250971e-2, 400

 

Error, complex argument to max/min

 

`ϵcm` := 0.35e-2; `ϵs` := `ϵcm`*(d-c)/c; T[1] := `ϵs`*Es*As; T[2] := fsy*As; T[3] := (fsu+(fsy-fsu)*((`ϵsu`-`ϵs`)/(`ϵsu`-`ϵsh`))^P)*As; C := b*c*(int(sigma, `ϵc` = 0 .. `ϵcm`))/`ϵcm`; eq[1] := T[1] = C; `ϵl`[1] := `ϵy`; eq[2] := T[2] = C; `ϵl`[2] := `ϵsh`; eq[3] := T[3] = C; cc1 := max(solve(eq[1], c)); `ϵss1` := subs(c = cc, `ϵs`); Ta1 := subs(c = cc, T[1]); cc2 := max(solve(eq[2], c)); `ϵss1` := subs(c = cc, `ϵs`); Ta2 := subs(c = cc, T[2]); cc3 := max(solve(eq[3], c)); `ϵss3` := subs(c = cc, `ϵs`); Ta3 := subs(c = cc, T[3]); M[i] := b*cc^2*fcm*(int(sigma*`ϵc`, `ϵc` = 0 .. `ϵcm`))*10^(-6)/`ϵcm`^2+T*(d-cc)*10^(-6); phi[i] := `ϵcm`/cc; cd[i] := cc/d; print(`ϵcm`, `ϵss`, Ta/As); i := i+1

7501.663386*c

 

308.9753080

 

0.1055633997e-1

 

6333803.979

 

159.9645223

 

0.1055633997e-1

 

1200000

 

Error, complex argument to max/min

 

0.1055633997e-1

 

1254623.652

 

0.35e-2, 0.9349901112e-2, 400

(11)

``

``

``

``

``

NULL

NULL

``

``

``

``

``

``

``

``

``

``

``

``

``

NULL

``

``

``

``

``

``

``

``

``


 

Download mathias.mw

simple non complex solutions ?

1 2 3 4 5 6 7 Last Page 1 of 1344