# Question:How to convert Kummer expression into other simple formula?

## Question:How to convert Kummer expression into other simple formula?

Maple

if the tolerance can only accept gamma function, rational function

How to convert Kummer expression into other simple formula?

i have calculated a generating function, but the actual answer is much simpler than this

Gen := {p(z) = exp(-I*z/sqrt(c))*KummerM(-(-(1/2)*sqrt(c)*beta+(1/2*I)*beta*c+I*(-1/2+c)*x)/sqrt(c),
beta,
(2*I)*z/sqrt(c))*(-KummerU(-(1/2)*(-sqrt(c)*beta+I*beta*c-I*x+(2*I)*c*x)/sqrt(c),
beta, 0)*_C1+1)+exp(-I*z/sqrt(c))*KummerU(-(-(1/2)*sqrt(c)*beta+(1/2*I)*beta*c+I*(-1/2+c)*x)/sqrt(c), beta, (2*I)*z/sqrt(c))*_C1+(8*I)*exp(-I*z/sqrt(c))*(((-2+beta)*x-beta)*c+x)*((1/2)*sqrt(c)*beta+(I*x+(1/2*I)*beta)*c-(1/2*I)*x)*((Int(exp(I*_z1/sqrt(c))*KummerU(-(-(1/2)*sqrt(c)*beta+(1/2*I)*beta*c+I*(-1/2+c)*x)/sqrt(c), beta, (2*I)*_z1/sqrt(c))/((-(4*I)*(-2+beta)*(x^2-(1/4)*beta^2+(1/2)*x*beta)*c^(3/2)+(4*I)*(-2+beta)*(x+(1/2)*beta)^2*c^(5/2)+I*x^2*(-2+beta)*sqrt(c)-(8*((-1/2+c)^2*x^2+(-1/2+c)*beta*c*x+(1/4)*c*(c+1)*beta^2))*((-1/2+c)*x+(1/2)*c*beta))*KummerM(-(1/2*I)*(2*c*x+c*beta-x+I*sqrt(c)*beta)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*KummerU(-(1/2*I)*((2*I+I*beta)*sqrt(c)+c*beta-x+2*c*x)/sqrt(c), beta, (2*I)*_z1/sqrt(c))+(2*I)*KummerU(-(1/2*I)*(2*c*x+c*beta-x+I*sqrt(c)*beta)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*KummerM(-(1/2*I)*((2*I+I*beta)*sqrt(c)+c*beta-x+2*c*x)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*((beta^2-2*x*beta-4*x^2)*c^(3/2)+4*(x+(1/2)*beta)^2*c^(5/2)+sqrt(c)*x^2)), _z1 = 0 .. z))*KummerM(-(-(1/2)*sqrt(c)*beta+(1/2*I)*beta*c+I*(-1/2+c)*x)/sqrt(c), beta, (2*I)*z/sqrt(c))-(Int(KummerM(-(-(1/2)*sqrt(c)*beta+(1/2*I)*beta*c+I*(-1/2+c)*x)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*exp(I*_z1/sqrt(c))/((-(4*I)*(-2+beta)*(x^2-(1/4)*beta^2+(1/2)*x*beta)*c^(3/2)+(4*I)*(-2+beta)*(x+(1/2)*beta)^2*c^(5/2)+I*x^2*(-2+beta)*sqrt(c)-(8*((-1/2+c)^2*x^2+(-1/2+c)*beta*c*x+(1/4)*c*(c+1)*beta^2))*((-1/2+c)*x+(1/2)*c*beta))*KummerM(-(1/2*I)*(2*c*x+c*beta-x+I*sqrt(c)*beta)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*KummerU(-(1/2*I)*((2*I+I*beta)*sqrt(c)+c*beta-x+2*c*x)/sqrt(c), beta, (2*I)*_z1/sqrt(c))+(2*I)*KummerU(-(1/2*I)*(2*c*x+c*beta-x+I*sqrt(c)*beta)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*KummerM(-(1/2*I)*((2*I+I*beta)*sqrt(c)+c*beta-x+2*c*x)/sqrt(c), beta, (2*I)*_z1/sqrt(c))*((beta^2-2*x*beta-4*x^2)*c^(3/2)+4*(x+(1/2)*beta)^2*c^(5/2)+sqrt(c)*x^2)), _z1 = 0 .. z))*KummerU(-(-(1/2)*sqrt(c)*beta+(1/2*I)*beta*c+I*(-1/2+c)*x)/sqrt(c), beta, (2*I)*z/sqrt(c)))}

﻿