Question: Solving non-linear coupled initial value problem

I am trying to solve three non-linear coupled initial value problems. The equations are a bit complicated. The MAPLE code is 



eq[1] := (1/6)*Ra*v(x)^3*((2*v(x)*w(x)^2*(v(x)^2/w(x)^2-3)*(diff(w(x), x))-6*w(x)^3*(1-v(x)/w(x))^2*(diff(v(x), x)))*A+v(x)^2*w(x)^2*(2*v(x)/w(x)-3)*(diff(w(x), x))-3*w(x)^4*(1-v(x)/w(x))^2*(diff(v(x), x)))/(w(x)^2*(w(x)+2*A)^2*(2*v(x)+3*B))+u(x)

eq[2] := (1/105)*(diff(u(x)^2*(v(x)^2+11*B*v(x)+39*B^2)/v(x), x))+(1/6)*Ra*Pr*v(x)*((3*v(x)*w(x)^2*(v(x)^2/w(x)^2-2)*(diff(w(x), x))-12*w(x)^3*(1-v(x)/w(x))^2*(diff(v(x), x)))*A+v(x)^2*w(x)^2*(3*v(x)/w(x)-4)*(diff(w(x), x))-6*w(x)^4*(1-v(x)/w(x))^2*(diff(v(x), x)))/(w(x)^2*(w(x)+2*A)^2)-Pr*u(x)/v(x)

eq[3] := (1/60)*(diff(u(x)*w(x)^2*(v(x)*w(x)^3-4*v(x)^2*w(x)^2+5*v(x)^3*w(x)+(2*w(x)^3-6*v(x)*w(x)^2+20*v(x)^3)*B)/(v(x)^4*(w(x)+2*A)), x))-2/(w(x)+2*A)

pars := {A = 1, B = 1, Pr = .7, Ra = 100}

for i to 3 do Eq[i] := subs(pars, eq[i]) end do

eqs := Eq[1], Eq[2], Eq[3]

ICs := u(0) = 0, v(0) = 0, w(0) = 0

vars := u(x), v(x), w(x)

sol := dsolve({ICs, eqs}, {vars}, type = numeric)


MAPLE says:

Error, (in sol) cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up
Is it possible to solve the problem in MAPLE? If yes, then how do I approach?
Please Wait...