Question: Can Maple solve this system of equations?

Hello, everyone. I'm sorry for bed view. Can i solve the system of equations in maple which above this text. I had inputted the system in Maple, but there is mistake: 

Error, (in dsolve/numeric/process_input) input system must be an ODE system, got independent variables {t, tau, Q(tau)}.

Code:

eq :=

diff(x(t), t) = -y(t)-z(t)-(diff(x(Q(tau)), tau))*((diff(x(Q(tau)), tau))*(-y(t)-z(t))+(diff(y(Q(tau)), tau))*(x(t)+a*y(t))+(diff(z(Q(tau)), tau))*(b-z(t)*(x(t)-c)))/((diff(x(Q(tau)), tau))^2+(diff(y(Q(tau)), tau))^2+(diff(z(Q(tau)), tau))^2)+eps_x*q(t),

diff(y(t), t) = x(t)+a*y(t)-(diff(y(Q(tau)), tau))*((diff(x(Q(tau)), tau))*(-y(t)-z(t))+(diff(y(Q(tau)), tau))*(x(t)+a*y(t))+(diff(z(Q(tau)), tau))*(b-z(t)*(x(t)-c)))/((diff(x(Q(tau)), tau))^2+(diff(y(Q(tau)), tau))^2+(diff(z(Q(tau)), tau))^2)+eps_y*q(t),

diff(z(t), t) = b+z(t)*(x(t)-c)-(diff(z(Q(tau)), tau))*((diff(x(Q(tau)), tau))*(-y(t)-z(t))+(diff(y(Q(tau)), tau))*(x(t)+a*y(t))+(diff(z(Q(tau)), tau))*(b-z(t)*(x(t)-c)))/((diff(x(Q(tau)), tau))^2+(diff(y(Q(tau)), tau))^2+(diff(z(Q(tau)), tau))^2)+eps_z*q(t),

diff(q(t), t) = ax*(-y(t)-z(t)-(diff(x(Q(tau)), tau))*((diff(x(Q(tau)), tau))*(-y(t)-z(t))+(diff(y(Q(tau)), tau))*(x(t)+a*y(t))+(diff(z(Q(tau)), tau))*(b-z(t)*(x(t)-c)))/((diff(x(Q(tau)), tau))^2+(diff(y(Q(tau)), tau))^2+(diff(z(Q(tau)), tau))^2))+ay*(x(t)+a*y(t)-(diff(y(Q(tau)), tau))*((diff(x(Q(tau)), tau))*(-y(t)-z(t))+(diff(y(Q(tau)), tau))*(x(t)+a*y(t))+(diff(z(Q(tau)), tau))*(b-z(t)*(x(t)-c)))/((diff(x(Q(tau)), tau))^2+(diff(y(Q(tau)), tau))^2+(diff(z(Q(tau)), tau))^2))+az*(b+z(t)*(x(t)-c)-(diff(z(Q(tau)), tau))*((diff(x(Q(tau)), tau))*(-y(t)-z(t))+(diff(y(Q(tau)), tau))*(x(t)+a*y(t))+(diff(z(Q(tau)), tau))*(b-z(t)*(x(t)-c)))/((diff(x(Q(tau)), tau))^2+(diff(y(Q(tau)), tau))^2+(diff(z(Q(tau)), tau))^2))+beta*q(t):

cond := x(0) = 0, y(0) = 0, z(0) = 1, q(0) = 0:
F := dsolve({cond, eq}, [x(t), y(t), z(t), q(t)], numeric).


What program (Maple,Matlab,mathcad...) can solve, if Maple can't.

Thank's.

Please Wait...