Question: Solution for the condition with two unknowns

Hello,

 

I have the following condition with two unknowns: t1 and t3:

-N*exp(Q1*alpha*eta*t1/(N*w))*exp(-(((N*w-z)*t1^2+((-N*w+z)*t3+2*Q1)*t1+(1/2)*t3*(t3*(N*w-z)-2*Q1))*alpha-2*N*w*C[max]*(t1-(1/2)*t3))*eta/(N*w))*S1*upsilon*w+N*exp(Q1*alpha*eta*t1/(N*w))*exp(-(((N*w-z)*t1^2+((-N*w+z)*t1+2*Q1)*t1+(1/2)*t1*((N*w-z)*t1-2*Q1))*alpha-2*N*w*C[max]*(t1-(1/2)*t1))*eta/(w*N))*S1*upsilon*w+K1^2*exp((1/2)*t1^2*alpha*eta*z/(N*w))*exp(-(1/2)*t1^2*alpha*eta)*exp(t1*eta*C[max])*alpha*eta*t1*z-K1^2*exp((1/2)*t1^2*alpha*eta*z/(N*w))*exp(-(1/2)*t1^2*alpha*eta)*exp(t1*eta*C[max])*alpha*eta*t3*z+K1*exp((1/2)*t1^2*alpha*eta*z/(N*w))*exp(-(1/2)*t1^2*alpha*eta)*exp(t1*eta*C[max])*S1*alpha*eta*t1*z-K1*exp((1/2)*t1^2*alpha*eta*z/(N*w))*exp(-(1/2)*t1^2*alpha*eta)*exp(t1*eta*C[max])*S1*alpha*eta*t3*z = 0

I know that this condition holds when t1=t3. Does there exist an additional solution for t1 and t3 which satisfies this condition?

Thanks,

Dmitry

Please Wait...