Question: Solve IVP with complex coefficients

Solve IVP with complex coef. with compplex varables numerically..

the sys. is x'=-iDelta1x(t)+y(t)+epsilon

y'=-iDelta2y(t)+x(t)z(t)

z'=-2(x*(t)y(t)+x(t)y*(t)), where * means complex conjugate 

I solve it as:

epsilon:=5:Delta1:=4:Delta2:=4:assume(z(t),real):

var:={x_R(t),y_R(t),z_R(t),x_I(t),y_I(t),z_I(t)}:
dsys :={diff(x(t),t)=-I*Delta1*x(t)+y(t)+epsilon, diff(y(t),t)=-I*Delta2*y(t)+x(t)*z(t), diff(z(t),t)=-2*(conjugate(x(t))*y(t)+conjugate(y(t))*x(t))}:
functions := indets(dsys, anyfunc(identical(t))):
redefinitions := map(f -> f = cat(op(0, f), _R)(t) + I*cat(op(0,f), _I)(t), functions):
newsys := map(evalc @ Re, redefinitions) union map(evalc @ Im, redefinitions):

incs := {x_R(0)=0, x_I(0)=0, y_R(0)=0, y_I(0)=0,z_R(0)=-1/2, z_I(0)=0}:
dsol1 :=dsolve({newsys,incs},var,numeric, output=listprocedure, abserr=1e-9, relerr=1e-8,range=0..1):

but it seems there is not runing propebly

 

Please Wait...