Question: Optimization which uses solutions of system

how to do optimization for two equations in terms of two variables

 

LPSolve({eq1}, {eq2}, assume = {nonnegative});

 

eq1 is a rational function and eq2 is a very large rational function

after run , it return error, objective function must be specified as a linear polynomial or vector

 

da := [LengthSplit(Flatten([[1,m],[2,m2],[seq([i+1,close3[i][1]], i=2..4)]]),2)];
f := PolynomialInterpolation(da, z):
solution := solve(f=-z, z, explicit);
zz := [x1,x2,x3,x4];
sigma := symMonomial(zz); #sigma := [x1+x2+x3+x4, x1*x2+x1*x3+x1*x4+x2*x3+x2*x4+x3*x4, x1*x2*x3+x1*x2*x4+x1*x3*x4+x2*x3*x4, x1*x2*x3*x4]
sys1 := subs([x1=solution[1],x2=solution[2],x3=solution[3],x4=solution[4]], sigma[1]):
sys2 := subs([x1=solution[1],x2=solution[2],x3=solution[3],x4=solution[4]], sigma[2]):
sys3 := subs([x1=solution[1],x2=solution[2],x3=solution[3],x4=solution[4]], sigma[3]):
sys4 := subs([x1=solution[1],x2=solution[2],x3=solution[3],x4=solution[4]], sigma[4]):
da := [seq([i,close3[i][1]], i=1..5)];

with(Optimization):
LPSolve(sys1, {sys2}, assume = {nonnegative});

 

Please Wait...