Question: Plot of ODE system solution in spherical coordinates

I want to plot the position of Spherical pendulum. there are differential equation for spherical pendulum in spherical coordinates

sys := {((D@@2)(phi))(t) = -2*(D(phi))(t)*(D(theta))(t)*cos(theta(t))/sin(phi(t)),
((D@@2)(theta))(t) = (D(phi))(t)^2*cos(theta(t))*sin(theta(t))-9.8*sin(theta(t))}

 

with initial conditions

theta(0) = (1/2)*Pi, (D(theta))(0) = 0, phi(0) = (1/2)*Pi, (D(phi))(0) = 1

I tried:

eq := dsolve([((D@@2)(theta))(t) = (D(phi))(t)^2*cos(theta(t))-9.8*sin(theta(t)),
((D@@2)(phi))(t) = -2*(D(phi))(t)*(D(theta))(t)*cos(theta(t))/sin(phi(t)),
theta(0) = (1/2)*Pi, (D(theta))(0) = 0, phi(0) = (1/2)*Pi, (D(phi))(0) = 1],numeric)

how to change coordinates

x(t) = sin(theta(t))*cos(phi(t))
y(t) = sin(theta(t))*sin(phi(t))
z(t) = cos(theta(t))

and how to plot it from t=0 to 10?

Please Wait...