Question: ODE, infinite domain

TQ.mw

Can any one help for finding the solution of these differntial equations and then plotting the graph for differnt values of M

(FILE ATTACHED)
 

eqn1 := (R/(R-theta(eta))+Omega)*(diff(f(eta), `$`(eta, 3)))+f(eta)*(diff(f(eta), `$`(eta, 2)))+R*(diff(f(eta), `$`(eta, 2)))*(diff(theta(eta), eta))/(R-theta(eta))^2+Omega*(diff(g(eta), eta))+lambda*theta(eta)*Cos(alpha)-M*(diff(f(eta), eta))^2 = 0; eqn2 := (R/(R-theta(eta))+(1/2)*Omega)*(diff(g(eta), `$`(eta, 2)))-2*Omega*(2*g(eta)+diff(f(eta), `$`(eta, 2)))+(diff(f(eta), eta))*g(eta)+(diff(g(eta), eta))*f(eta)+R*(diff(g(eta), eta))*(diff(theta(eta), eta))/(R-theta(eta))^2 = 0; eqn3 := (1+`ε`*theta(eta))*(diff(theta(eta), `$`(eta, 2)))+`ε`*(diff(theta(eta), eta))^2+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+Q*theta(eta)+L*exp(-eta) = 0

(R/(R-theta(eta))+Omega)*(diff(diff(diff(f(eta), eta), eta), eta))+f(eta)*(diff(diff(f(eta), eta), eta))+R*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))/(R-theta(eta))^2+Omega*(diff(g(eta), eta))+lambda*theta(eta)*Cos(alpha)-M*(diff(f(eta), eta))^2 = 0

 

(R/(R-theta(eta))+(1/2)*Omega)*(diff(diff(g(eta), eta), eta))-2*Omega*(2*g(eta)+diff(diff(f(eta), eta), eta))+(diff(f(eta), eta))*g(eta)+(diff(g(eta), eta))*f(eta)+R*(diff(g(eta), eta))*(diff(theta(eta), eta))/(R-theta(eta))^2 = 0

 

(1+epsilon*theta(eta))*(diff(diff(theta(eta), eta), eta))+epsilon*(diff(theta(eta), eta))^2+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+Q*theta(eta)+L*exp(-eta) = 0

(1)

Omega := 2.; M := .5; R := 5; lambda := 20; `ε` := .2; Pr := 1; Q := .5; L := .5; W := .5; n := .1; alpha := (1/6)*Pi

bc := f(0) = W, (D(f))(0) = 0, (D(f))(infinity) = 0, (D(theta))(0) = -1, theta(infinity) = 0, g(0) = -n*(DD(f))(0), g(infinity) = 0

f(0) = W, (D(f))(0) = 0, (D(f))(N) = 0, (D(theta))(0) = -1, theta(N) = 0, g(0) = -n*(DD(f))(0), g(N) = 0

(2)

``


 

Download TQ.mw

 

Please Wait...