Question: Difference between results of Maple And Matlab

Hi

However I run similar codes in Maple and Matlab, but the different results are observed.

By increasing number of basis (i.e. m) The convergence is observed, but results are different from each other.

The convergence for Maple: (m,P) =(10,10.8154),(20,10.8081),(30,10.8067),(50,10.8061)

The convergence for Matlab: (m,P) =(10,10.0474),(20,10.0194),(30,10.0143),(40,10.0125)

I have two questions:

1-which answer is correct?

2-why the different results for the same  number of basis  are obtained?

 

Maple code (Maple 2016)

restart;

tm := time():

with(LinearAlgebra):

Digits := 500:

beta := 1:

nu := 0.3:

lambda := 2:

G := 5:

ko := .5*0.1e7:

Ec := 0.380e12:

Em := 0.70e11:

ri := 0:

ro := 0.5:

ti := 0.1e-1:

K := 0.4e-1*0.1e10:

n := 1:

m := 20:

alpha := 0.1:

t := ti*(1+alpha*r/ro)^beta:

Er := (Ec-Em)*(r/ro)^n+Em:

W := simplify(add(a[n]*ChebyshevT(n, r), n = 0 .. m)):

sys := {eval(W, r = ro), eval(diff(W, r), r = ri)}:

W := subs(solve(sys, {a[0], a[1]}), W):

d1 := diff(W, r):

d2 := diff(d1, r):

W := subs(solve({eval(ko*d1-Ec*ti^3*(1+alpha)^(3*beta)*(d1*nu+d2*r)/(12*r*(-nu^2+1)), r = ro) = 0}, {a[2]}), W):

d1 := diff(W, r):

d2 := diff(d1, r):

Uf := int(K*(1+lambda*r/ro+G*(r/ro)^2)*W^2*r, r = ri .. ro):

NUM := int(((d2+d1/r)^2-(2*(1-nu))*d2*d1/r)*Er*t^3*r/(12*(-nu^2+1)), r = ri .. ro)+ko*ro*(eval(d1, r = ro))^2+Uf:

DEN := int(d1^2*r, r = ri .. ro):

PT := NUM-Em*ti^3*P*DEN/ro^2:

for c from 3 to m do

eq[c] := diff(PT, a[c]) end do:

MT := GenerateMatrix([seq(eq[j], j = 3 .. m)], [a[j]$j = 3 .. m])[1]:

solve(Determinant(MT)):

evalf[10](%[1]);

____________________________________________________________________________

Matlab Code (R2014a)

clear all;
digits(10);
tic
m = 20;
n = 1;
alpha = 0.1;
beta = 1;
nu = 0.3;
lambda = 2;
G = 5;
ko = 0.5*1e6;
Ec = 0.380e12;
Em = 0.70e11;
ro = 0.5;
ti = 0.1e-1;
K = 0.04*0.1e10;
ri=0;
syms r P;
c=sym('c%d',[1,m+1]);
c(1)=1;
c(2)=r;
for j=3:m+1
    c(j)=simplify(2*r*c(j-1)-c(j-2));
end
Er = (Ec-Em)*(r/ro)^n+Em;
a=sym('a%d',[1,m+1]);
t = ti*(1+alpha*r/ro)^beta;
W = simplify(a*transpose(c));
[a(1),a(2)] = solve(subs(W,r,ro)==0,subs(diff(W,r),r,ri)==0,a(1),a(2));
W = simplify(a*transpose(c));
d1 = diff(W, r);
d2 = diff(d1, r);
a(3)=solve(subs(ko*d1-Ec*ti^3*(1+alpha)^(3*beta)*(d1*nu+d2*r)/(12*r*(-nu^2+1)),r,ro)==0,a(3));
W = simplify(a*transpose(c));
d1 = diff(W, r);
d2 = diff(d1, r);
Uf = int(K*(1+lambda*r/ro+G*(r/ro)^2)*W^2*r,r,ri,ro);
NUM = int(((d2+d1/r)^2-(2*(1-nu))*d2*d1/r)*Er*t^3*r/(12*(-nu^2+1)),r,ri,ro)+ko*ro*(subs(d1,r,ro))^2+Uf;
DEN = int(d1^2*r, r , ri , ro);
PT = NUM-Em*ti^3*P*DEN/ro^2;
for q=1:m-2
    eq(q)= diff(PT, a(q+3));
end;
for q = 1:m-2
    for u = 1:m-2
        T = coeffs(eq(q),a(u+3));
        tt(q,u) = T(2);
    end;
end;
F=sort(vpa(solve(det(tt))));
F(1)
toc

___________________________________________________________

Please Wait...