Question: Inverse of Euler-Lagrange equation

Hi

In mathematics, the inverse problem for Lagrangian mechanics (Helmholtz inverse problem) is the problem of determining whether a given system of ordinary differential equations can arise as the Euler–Lagrange equations for some Lagrangian function. 

For more information read section IV.2. page 65 of the following reference:

http://www.unilim.fr/pages_perso/loic.bourdin/Documents/bourdin-thesis2013.pdf

________________________________________________________________________

 

I need some hints or procedures (if it is possible) for similar (but a little more complex) problem:

1- Assume that you have one ordinary differential equation, ode1(r) in polar coordinate system (i.e. (r, theta)). The ODE is taken to be independent from theta (It is not a PDE).

2- Assume that "Euler" is an operator that gives the Euler-Lagrange equation, I need a procedure to calculate ode2(r) such that

1/(2r)*Euler (ode2(r)) -Laplacian (1/(2r)*Euler(ode1(r)))=0

It is obvious that we need inverse of Euler operator (say IE) to calculate ode2(r).

ode2(r) =IE( 2r*Laplacian (1/(2r)*Euler(ode1(r))))

I calculate ode2(r) for some simpler cases via trial and error method.

s := proc (S) 
subs(w = w(r), w1 = diff(w(r), r), w2 = diff(w(r), r$2), S) 
end proc: 
Euler := proc (f) 
s(diff(f, w))-(diff(s(diff(f, w1)), r))+diff(s(diff(f, w2)), r$2) 
end proc:

Example:

ode1(r) = -r*(diff(w(r),r))^2:

ode2(r) = (diff(w(r),r))^2/r+r*(diff(w(r),r$2))^2:

-1/(2*r)*Euler(w1^2*r):

simplify(1/(2*r)*Euler(w1^2/r+r*w2^2)-VectorCalculus:-Laplacian(%,('polar')[r,theta]))

I will be grateful if you can hint me to write an appropriate procedure.

Thanks

Please Wait...