Question: Laplacian and Euler Lagrange equation


Please download the attachment.


I try to find a relation between EL and Lap(EL) in polar coordinate for one variable function w(r), where Lap is laplacian and EL is Euler Lagrange equation. Please check the Maple code and help me to do some manipulations to find a general relation (if any relation exists!).

In fact I need the inverse of Euler Lagrange equation to obtain f(r) for an arbitrary function g(r) in equation below

EL(f) = Lap(EL(g))

Or f=inverseEL(Lap(EL(g)))

Thank you for taking your time




restart; s := proc (f) subs(d[0] = w(r), seq(d[n] = diff(w(r), `$`(r, n)), n = 1 .. 10), f) end proc; ss := proc (f) subs(seq(diff(w(r), `$`(r, 11-n)) = d[11-n], n = 1 .. 10), w(r) = d[0], f) end proc; EL := proc (eq) s(diff(ss(eq), d[0]))+add((diff(s(diff(ss(eq), d[n])), `$`(r, n)))*(-1)^n, n = 1 .. 10) end proc

f := (diff(w(r), r, r))^2*r^4+4*r^6*(diff(w(r), r, r, r))^2:

a1 := EL(F):

a2 := VectorCalculus:-Laplacian(EL(f), 'polar[r, t]'):


8*r^6*(diff(diff(diff(diff(diff(diff(diff(diff(w(r), r), r), r), r), r), r), r), r))+248*r^5*(diff(diff(diff(diff(diff(diff(diff(w(r), r), r), r), r), r), r), r))+2582*r^4*(diff(diff(diff(diff(diff(diff(w(r), r), r), r), r), r), r))+10910*r^3*(diff(diff(diff(diff(diff(w(r), r), r), r), r), r))+17786*r^2*(diff(diff(diff(diff(w(r), r), r), r), r))+8192*r*(diff(diff(diff(w(r), r), r), r))-92*(diff(diff(w(r), r), r))





Please Wait...