# Question:how to animate a plot for a space probe

## Question:how to animate a plot for a space probe

Maple 2018

Hello everyone,

I am a studen and have an astrophysics class where I programmed a basic space probe to go from a planet A to a Planet B.

I have a 2D grap and a 3D graph already done however I would like to animate them.

I have included both a picture and my whole program. Also see some code below.

Thanks to all.

 > restart:
 > with(linalg): with(DEtools): #Sonde Position := [x(t), y(t)]: #Terre omega1 :=2*Pi: r1 := [cos(omega1*t), sin(omega1*t)]: x1(t) := innerprod([1, 0], r1): y1(t) := innerprod([0, 1], r1): #Mars omega2 := sqrt(2)*Pi/2: phi2 := Pi/2: r2 := [2*cos(omega2*t + phi2), 2*sin(omega2*t+ phi2)]: x2(t):= innerprod([1, 0], r2): y2(t):= innerprod([0, 1], r2): #Les couplages gravitationnelles (masse). c1 := 1.0: c2 := 0.2: c0 := 100: #Les forces appliqués sur la sonde ForceGravitationnelle1 := -c1*(Position-r1)/(sqrt((x(t)-x1(t))^2+(y(t)-y1(t))^2))^3: ForceGravitationnelle2 := -c2*(Position-r2)/(sqrt((x(t)-x2(t))^2+(y(t)-y2(t))^2))^3: ForceGravitationnelle0 := -c0*(Position)/(sqrt((x(t))^2+(y(t))^2))^3: #La somme des forces. Force := ForceGravitationnelle1 + ForceGravitationnelle2 + ForceGravitationnelle0: Fx := innerprod([1, 0], Force): Fy := innerprod([0, 1], Force): #L'interval de temps. TempsInit := 0: TempsFinal := 3: #Les équations différentielles de deuxieme ordre. eq1x := (D(D(x)))(t) = Fx: eq1y := (D(D(y)))(t) = Fy: #Les conditions initiales.. phi0 :=(Pi)/2: V0 := 12.946802: x0 := 1: y0 := 0.1: Vx0 := V0*cos(phi0): Vy0 := V0*sin(phi0): ConditionsInit := x(0) = x0, y(0) = y0, D(x)(0) = Vx0, D(y)(0) = Vy0: #La trajectoire de la sonde. Trajectoire := dsolve({eq1x, eq1y, ConditionsInit}, {x(t), y(t)}, numeric, range = TempsInit..TempsFinal, maxfun=0): #Tracage du graphique de la trajectoire en 2D plots[odeplot](Trajectoire, [[0,0],[x1(t),y1(t)],[x2(t), y2(t)], [x(t), y(t)]], TempsInit..TempsFinal, numpoints = 1000, axes = boxed, scaling = constrained, thickness = [2], color = ["Black", "Green", "Blue", "Red"], labels = ["X (L)", "Y (L)"], labelfont = ["Times", 14], title = "Mouvement de la sonde dans le plan", titlefont = ["Helvetica", 14], style=[point,line,line,line], symbol = solidcircle); #Tracage du graphique en 3D: plots[odeplot](Trajectoire, [[0,0,t],[x1(t),y1(t), t],[x2(t), y2(t), t], [x(t), y(t), t]], TempsInit..TempsFinal, numpoints = 1000, axes = boxed, scaling = constrained, thickness = [3], color = ["Black", "Green", "Blue", "Red"], labels = ["X (L)", "Y (L)", "t"], labelfont = ["Times", 14], title = "Mouvement de la sonde dans le plan", titlefont = ["Helvetica", 14], style=[point,line,line,line], symbol = solidcircle);

 >

﻿