Question: checking the solution

I have a complex PDE as follows:

where u(x, t) is a complex function.

The following function u_11(x, t) is a solution for the PDE above. 

 

 

where

 

I want to check whether the u_11(x,t) is a solution for the PDE or NOT. 

 


 How to correctly define the complex PDE in MAPLE?
 

PDE:=I*diff(u(x,t),t)+diff(u(x,t),x$2)+alpha*(abs(u(x,t))^2)*u(x,t)+ I*( gamma[1]*diff(u(x,t),x$3) + gamma[2]*(abs(u(x,t))^2)*u(x,t) + gamma[3]*diff((abs(u(x,t))^2),x)*u(x,t) )=0;

or

PDE:=I*diff(u(x,t),t)+diff(u(x,t),x$2)+alpha*(evalc(abs(u(x,t))^2))*u(x,t)+ I*( gamma[1]*diff(u(x,t),x$3) + gamma[2]*(evalc(abs(u(x,t))^2))*u(x,t) + gamma[3]*diff((evalc(abs(u(x,t))^2)),x)*u(x,t) )=0;

Let's check the solution is right or not:

k:=(gamma[2]+2*gamma[3]-3*gamma[1]*alpha)/(6*gamma[1]*gamma[3]);
omega:=(((1-3*gamma[1]*k)*(2*k-c-3*gamma[1]*(k^2))  )/(gamma[1]))+(k^2)-gamma[1]*(k^3);

uu[11]:=1/(gamma[2]+2*gamma[3])^(1/2)*(-3*(3*k^2*gamma[1]+c-2*k))^(1/2 )*sin(1/2/gamma[1]*2^(1/2)*(gamma[1]*(3*k^2*gamma[1]+c-2*k))^(1/2)*(-c*t+x))/ cos(1/2/gamma[1]*2^(1/2)*(gamma[1]*(3*k^2*gamma[1]+c-2*k))^(1/2)*(-c*t+x))*exp( I*(k*x-omega*t));
pdetest(u(x,t)=uu[11],PDE);

 

 download-code.mw

 

Please Wait...