Question: Is there any method to handle the huge expression

Is there any method to handle the huge expression of A where it is given that sigma+x=a, sigma*x=b

It is huge. I tryed with

B := mtaylor(A, [sigma, x], 8)

Unable to handle. I know that the expression can be written in powers in sigma^ix^j and thereafter sigma+x=a, sigma*x=b could be substituted..

Any help.

A := -sigma*(sigma^2+2*sigma*(alpha-1)+alpha*beta+1-alpha)*(alpha+sigma-1)^2*(sigma*theta+delta)*(gamma1*(alpha+sigma-1)+(1-sigma)*(beta+sigma))*alpha*(1-x)^2*(beta+x)^3*((theta*x+delta-gamma1)*(alpha+x-1)-(1-x)*(beta+x))+alpha*(1-sigma)^2*(beta+sigma)^3*((sigma*theta+delta-gamma1)*(alpha+sigma-1)-(1-sigma)*(beta+sigma))*x*(x^2+2*x*(alpha-1)+alpha*beta+1-alpha)*(alpha+x-1)^2*(theta*x+delta)*(gamma1*(alpha+x-1)+(1-x)*(beta+x))

-sigma*(sigma^2+2*sigma*(alpha-1)+alpha*beta+1-alpha)*(alpha+sigma-1)^2*(sigma*theta+delta)*(gamma1*(alpha+sigma-1)+(1-sigma)*(beta+sigma))*alpha*(1-x)^2*(beta+x)^3*((theta*x+delta-gamma1)*(alpha+x-1)-(1-x)*(beta+x))+alpha*(1-sigma)^2*(beta+sigma)^3*((sigma*theta+delta-gamma1)*(alpha+sigma-1)-(1-sigma)*(beta+sigma))*x*(x^2+2*x*(alpha-1)+alpha*beta+1-alpha)*(alpha+x-1)^2*(theta*x+delta)*(gamma1*(alpha+x-1)+(1-x)*(beta+x))

(1)

NULL``

``

Download 1.mw1.mw

Please Wait...