Question: How can I extract an excellent approximate for polynomial function in terms of time?


Dear All,

I have a polynomial in terms of time. I know that based on the nature of the problem, the real function that governs this problem is the sum of exponential functions with a negative power, for example, in the form of alpha[0]+add(alpha[i]*exp(-beta[i]*t), i=1.. 5).

Can you help me if there is a method that can be used to obtain these exponential functions using following polynomial?

The polynomial function is as follow:

f:=0.020399949322360296902872908942 + 0.0261353198432118595103693714851*t^3 + 0.0240968505875842806805439681431*t^4 + 0.0148456155621193706595799212802*t^5 + 0.0239969764160351203722354728376*t^2 + 0.0204278458408370651586217048716*t - 0.00450853634927256388740864146173*t^6 - 0.0355389767483113696513996149731*t^7 - 0.0766669789661906882315038416910*t^8 - 0.120843030849135239578151569663*t^9 - 0.153280689906711146639066606024*t^10 - 0.150288711858517536713273977277*t^11 - 0.0808171080937786380164380347445*t^12 + 0.0872390654213369913348407061899*t^13 + 0.373992140377042586618283139889*t^14 + 0.766807288928470485618700282187*t^15 + 1.19339994493571167326973251788*t^16 + 1.49476369302534328383069681700*t^17 + 1.41015598591182237492637420929*t^18 + 0.593451797299651247527539427688*t^19 - 1.31434443870999971750661332301*t^20;

Best wishes

Please Wait...