I frequently end up with large equations with many repeated sub-expressions. These equations could be made infinitely more readable if this one expression were broken up into several expressions to calculate the sub-expressinos and store them in auxiliary variables. This is not just good for readability...it is also useful when it comes time to move the results into a programming implementation (Maple is just a playground).
Can anyone think of a way to write a routine or something that will accomplish this? As an example, I would like to break up this 10th degree polynomial:
(4*c^2*f^4*a*b*ap^2*fpp^2*cp^2-4*cp*dp*f^4*a^2*fp^2*c^2*ap^2+2*c^2*f^4*a*b*ap^4+2*cp^2*f^4*fp^4*c^4*ap*bp+2*c^2*f^4*a*b*fpp^4*cp^4-2*cp*dp*f^4*a^4*ap^2-4*c*d*f^4*a^2*ap^2*fpp^2*cp^2+4*cp^2*f^4*a^2*fp^2*c^2*ap*bp-2*c*d*f^4*a^2*fpp^4*cp^4+2*cp^2*f^4*a^4*ap*bp-2*cp*dp*f^4*fp^4*c^4*ap^2-2*c*d*f^4*a^2*ap^4)*t^10+(2*a^4*fpp^4*cp^4+2*fp^4*c^4*ap^4+2*a^4*ap^4+4*a^2*fp^2*c^2*ap^4+4*a^4*ap^2*fpp^2*cp^2+2*fp^4*c^4*fpp^4*cp^4+2*c^2*f^4*b^2*ap^4+8*a^2*fp^2*c^2*ap^2*fpp^2*cp^2+4*a^2*fp^2*c^2*fpp^4*cp^4+4*fp^4*c^4*ap^2*fpp^2*cp^2+8*c^2*f^4*a*b*fpp^4*cp^3*dp+8*c^2*f^4*a*b*ap^3*bp+8*c^2*f^4*a*b*ap^2*fpp^2*cp*dp+8*c^2*f^4*a*b*ap*bp*fpp^2*cp^2-8*c*d*f^4*a^2*fpp^4*cp^3*dp-8*c*d*f^4*a^2*ap^3*bp-8*c*d*f^4*a^2*ap^2*fpp^2*cp*dp-8*c*d*f^4*a^2*ap*bp*fpp^2*cp^2+4*c^2*f^4*b^2*ap^2*fpp^2*cp^2+2*c^2*f^4*b^2*fpp^4*cp^4-2*d^2*a^2*f^4*ap^4+2*cp^2*f^4*a^4*bp^2-2*dp^2*ap^2*f^4*a^4+4*cp^2*f^4*a^2*fp^2*c^2*bp^2+8*cp^2*f^4*fp^4*c^3*d*ap*bp-4*d^2*a^2*f^4*ap^2*fpp^2*cp^2-2*d^2*a^2*f^4*fpp^4*cp^4+8*cp^2*f^4*a^3*b*ap*bp+2*cp^2*f^4*fp^4*c^4*bp^2+8*cp^2*f^4*a^2*fp^2*c*d*ap*bp+8*cp^2*f^4*a*b*fp^2*c^2*ap*bp-8*cp*dp*f^4*fp^4*c^3*d*ap^2-8*cp*dp*f^4*a^3*b*ap^2-8*cp*dp*f^4*a^2*fp^2*c*d*ap^2-8*cp*dp*f^4*a*b*fp^2*c^2*ap^2-4*dp^2*ap^2*f^4*a^2*fp^2*c^2-2*dp^2*ap^2*f^4*fp^4*c^4)*t^9+(8*a^3*b*ap^4+8*a^4*ap^3*bp+8*fp^4*c^3*d*ap^4+8*a^4*fpp^4*cp^3*dp+8*a^3*b*fpp^4*cp^4+8*fp^4*c^4*ap^3*bp+16*a^2*fp^2*c^2*fpp^4*cp^3*dp+16*a^2*fp^2*c^2*ap^3*bp+16*a^2*fp^2*c^2*ap^2*fpp^2*cp*dp+16*a^2*fp^2*c^2*ap*bp*fpp^2*cp^2+8*fp^4*c^3*d*fpp^4*cp^4+16*fp^4*c^3*d*ap^2*fpp^2*cp^2+8*a^4*ap^2*fpp^2*cp*dp+8*a^4*ap*bp*fpp^2*cp^2+16*a^3*b*ap^2*fpp^2*cp^2+8*a^2*fp^2*c*d*ap^4+8*a^2*fp^2*c*d*fpp^4*cp^4+8*fp^4*c^4*fpp^4*cp^3*dp+8*fp^4*c^4*ap^2*fpp^2*cp*dp+8*fp^4*c^4*ap*bp*fpp^2*cp^2+16*a^2*fp^2*c*d*ap^2*fpp^2*cp^2+16*a*b*fp^2*c^2*ap^2*fpp^2*cp^2+8*a*b*fp^2*c^2*ap^4+8*a*b*fp^2*c^2*fpp^4*cp^4+4*c^2*f^2*a*b*fpp^4*cp^4+4*c^2*f^4*a*b*ap^2*fpp^2*dp^2+4*c^2*f^4*a*b*bp^2*fpp^2*cp^2+12*c^2*f^4*a*b*fpp^4*cp^2*dp^2+12*c^2*f^4*a*b*ap^2*bp^2+16*c^2*f^4*a*b*ap*bp*fpp^2*cp*dp-4*c*d*f^4*a^2*ap^2*fpp^2*dp^2-4*c*d*f^4*a^2*bp^2*fpp^2*cp^2-12*c*d*f^4*a^2*fpp^4*cp^2*dp^2-12*c*d*f^4*a^2*ap^2*bp^2-16*c*d*f^4*a^2*ap*bp*fpp^2*cp*dp+4*c*d*f^4*b^2*ap^2*fpp^2*cp^2+2*c*d*f^4*b^2*ap^4+2*c*d*f^4*b^2*fpp^4*cp^4+8*c^2*f^4*b^2*fpp^4*cp^3*dp+8*c^2*f^4*b^2*ap^3*bp+8*c^2*f^4*b^2*ap^2*fpp^2*cp*dp+8*c^2*f^4*b^2*ap*bp*fpp^2*cp^2-8*c*d*f^2*a^2*ap^2*fpp^2*cp^2-4*c*d*f^2*a^2*ap^4-4*c*d*f^2*a^2*fpp^4*cp^4+8*c^2*f^2*a*b*ap^2*fpp^2*cp^2+4*c^2*f^2*a*b*ap^4-4*cp*dp*f^2*a^4*ap^2+2*cp*dp*f^4*a^4*bp^2+8*cp^2*f^2*a^2*fp^2*c^2*ap*bp+4*cp^2*f^2*fp^4*c^4*ap*bp+4*cp^2*f^4*a^2*fp^2*d^2*ap*bp+4*cp^2*f^4*b^2*fp^2*c^2*ap*bp-8*d^2*a^2*f^4*fpp^4*cp^3*dp-8*d^2*a^2*f^4*ap^3*bp-8*d^2*a^2*f^4*ap^2*fpp^2*cp*dp-8*d^2*a^2*f^4*ap*bp*fpp^2*cp^2-4*d^2*a*b*f^4*ap^2*fpp^2*cp^2-2*d^2*a*b*f^4*ap^4-2*d^2*a*b*f^4*fpp^4*cp^4+4*cp^2*f^2*a^4*ap*bp-2*dp^2*ap*bp*f^4*a^4-2*dp^2*ap*bp*f^4*fp^4*c^4+8*cp^2*f^4*fp^4*c^3*d*bp^2+12*cp^2*f^4*fp^4*c^2*d^2*ap*bp+8*cp^2*f^4*a^3*b*bp^2+12*cp^2*f^4*a^2*b^2*ap*bp+8*cp^2*f^4*a^2*fp^2*c*d*bp^2+8*cp^2*f^4*a*b*fp^2*c^2*bp^2+16*cp^2*f^4*a*b*fp^2*c*d*ap*bp-8*cp*dp*f^2*a^2*fp^2*c^2*ap^2-4*cp*dp*f^2*fp^4*c^4*ap^2+4*cp*dp*f^4*a^2*fp^2*c^2*bp^2-4*cp*dp*f^4*a^2*fp^2*d^2*ap^2-4*cp*dp*f^4*b^2*fp^2*c^2*ap^2-12*cp*dp*f^4*fp^4*c^2*d^2*ap^2-12*cp*dp*f^4*a^2*b^2*ap^2+2*cp*dp*f^4*fp^4*c^4*bp^2-16*cp*dp*f^4*a*b*fp^2*c*d*ap^2-8*dp^2*ap^2*f^4*fp^4*c^3*d-8*dp^2*ap^2*f^4*a^3*b-8*dp^2*ap^2*f^4*a^2*fp^2*c*d-8*dp^2*ap^2*f^4*a*b*fp^2*c^2-4*dp^2*ap*bp*f^4*a^2*fp^2*c^2)*t^8+(12*a^2*b^2*ap^4+12*a^4*ap^2*bp^2+4*a^2*fp^2*d^2*ap^4+4*b^2*fp^2*c^2*ap^4+12*fp^4*c^2*d^2*ap^4+4*a^4*ap^2*fpp^2*dp^2+4*a^4*bp^2*fpp^2*cp^2+12*a^4*fpp^4*cp^2*dp^2+32*a^3*b*ap^3*bp+12*a^2*b^2*fpp^4*cp^4+12*fp^4*c^4*ap^2*bp^2+4*c^2*f^2*b^2*ap^4+8*a^2*fp^2*c^2*ap^2*fpp^2*dp^2+8*a^2*fp^2*c^2*bp^2*fpp^2*cp^2+24*a^2*fp^2*c^2*fpp^4*cp^2*dp^2+24*a^2*fp^2*c^2*ap^2*bp^2+32*a^2*fp^2*c^2*ap*bp*fpp^2*cp*dp+8*a^2*fp^2*d^2*ap^2*fpp^2*cp^2+4*b^2*fp^2*c^2*fpp^4*cp^4+4*a^2*fp^2*d^2*fpp^4*cp^4+8*b^2*fp^2*c^2*ap^2*fpp^2*cp^2+32*fp^4*c^3*d*ap^2*fpp^2*cp*dp+32*fp^4*c^3*d*ap*bp*fpp^2*cp^2+24*fp^4*c^2*d^2*ap^2*fpp^2*cp^2+32*fp^4*c^3*d*fpp^4*cp^3*dp+32*fp^4*c^3*d*ap^3*bp+12*fp^4*c^2*d^2*fpp^4*cp^4+32*a^3*b*ap^2*fpp^2*cp*dp+32*a^3*b*ap*bp*fpp^2*cp^2+24*a^2*b^2*ap^2*fpp^2*cp^2+16*a^4*ap*bp*fpp^2*cp*dp+32*a^3*b*fpp^4*cp^3*dp+32*a^2*fp^2*c*d*fpp^4*cp^3*dp+32*a^2*fp^2*c*d*ap^3*bp+32*a^2*fp^2*c*d*ap^2*fpp^2*cp*dp+4*fp^4*c^4*ap^2*fpp^2*dp^2+4*fp^4*c^4*bp^2*fpp^2*cp^2+12*fp^4*c^4*fpp^4*cp^2*dp^2+16*fp^4*c^4*ap*bp*fpp^2*cp*dp+8*c^2*f^2*b^2*ap^2*fpp^2*cp^2+32*a^2*fp^2*c*d*ap*bp*fpp^2*cp^2+32*a*b*fp^2*c^2*fpp^4*cp^3*dp+32*a*b*fp^2*c^2*ap^3*bp+32*a*b*fp^2*c^2*ap^2*fpp^2*cp*dp+32*a*b*fp^2*c^2*ap*bp*fpp^2*cp^2+32*a*b*fp^2*c*d*ap^2*fpp^2*cp^2+16*a*b*fp^2*c*d*ap^4+16*a*b*fp^2*c*d*fpp^4*cp^4+16*c^2*f^2*a*b*ap^3*bp+16*c^2*f^2*a*b*ap^2*fpp^2*cp*dp+16*c^2*f^2*a*b*ap*bp*fpp^2*cp^2+8*c^2*f^4*a*b*fpp^4*cp*dp^3+8*c^2*f^4*a*b*ap*bp^3+8*c^2*f^4*a*b*ap*bp*fpp^2*dp^2+8*c^2*f^4*a*b*bp^2*fpp^2*cp*dp-8*c*d*f^4*a^2*fpp^4*cp*dp^3-8*c*d*f^4*a^2*ap*bp^3-8*c*d*f^4*a^2*ap*bp*fpp^2*dp^2-8*c*d*f^4*a^2*bp^2*fpp^2*cp*dp+8*c*d*f^4*b^2*fpp^4*cp^3*dp+8*c*d*f^4*b^2*ap^3*bp+8*c*d*f^4*b^2*ap^2*fpp^2*cp*dp+8*c*d*f^4*b^2*ap*bp*fpp^2*cp^2+4*c^2*f^2*b^2*fpp^4*cp^4+4*c^2*f^4*b^2*ap^2*fpp^2*dp^2+4*c^2*f^4*b^2*bp^2*fpp^2*cp^2+12*c^2*f^4*b^2*fpp^4*cp^2*dp^2+12*c^2*f^4*b^2*ap^2*bp^2+16*c^2*f^4*b^2*ap*bp*fpp^2*cp*dp-16*c*d*f^2*a^2*fpp^4*cp^3*dp-16*c*d*f^2*a^2*ap^3*bp-16*c*d*f^2*a^2*ap^2*fpp^2*cp*dp-16*c*d*f^2*a^2*ap*bp*fpp^2*cp^2-4*d^2*a^2*f^2*ap^4+4*cp^2*f^2*a^4*bp^2-4*dp^2*ap^2*f^2*a^4+16*c^2*f^2*a*b*fpp^4*cp^3*dp+8*cp^2*f^2*a^2*fp^2*c^2*bp^2+16*cp^2*f^2*fp^4*c^3*d*ap*bp+16*cp^2*f^2*a^3*b*ap*bp+4*cp^2*f^2*fp^4*c^4*bp^2+16*cp^2*f^2*a^2*fp^2*c*d*ap*bp+16*cp^2*f^2*a*b*fp^2*c^2*ap*bp+4*cp^2*f^4*a^2*fp^2*d^2*bp^2+4*cp^2*f^4*b^2*fp^2*c^2*bp^2-8*d^2*a^2*f^2*ap^2*fpp^2*cp^2-4*d^2*a^2*f^2*fpp^4*cp^4-4*d^2*a^2*f^4*ap^2*fpp^2*dp^2-4*d^2*a^2*f^4*bp^2*fpp^2*cp^2-12*d^2*a^2*f^4*fpp^4*cp^2*dp^2-12*d^2*a^2*f^4*ap^2*bp^2-16*d^2*a^2*f^4*ap*bp*fpp^2*cp*dp-8*d^2*a*b*f^4*fpp^4*cp^3*dp-8*d^2*a*b*f^4*ap^3*bp-8*d^2*a*b*f^4*ap^2*fpp^2*cp*dp-8*d^2*a*b*f^4*ap*bp*fpp^2*cp^2-8*dp^2*ap*bp*f^4*fp^4*c^3*d-8*dp^2*ap*bp*f^4*a^3*b-8*dp^2*ap*bp*f^4*a^2*fp^2*c*d-8*dp^2*ap*bp*f^4*a*b*fp^2*c^2+12*cp^2*f^4*fp^4*c^2*d^2*bp^2+8*cp^2*f^4*fp^4*c*d^3*ap*bp+12*cp^2*f^4*a^2*b^2*bp^2+8*cp^2*f^4*a*b^3*ap*bp+16*cp^2*f^4*a*b*fp^2*c*d*bp^2+8*cp^2*f^4*a*b*fp^2*d^2*ap*bp+8*cp^2*f^4*b^2*fp^2*c*d*ap*bp-16*cp*dp*f^2*fp^4*c^3*d*ap^2-16*cp*dp*f^2*a^3*b*ap^2-16*cp*dp*f^2*a^2*fp^2*c*d*ap^2-16*cp*dp*f^2*a*b*fp^2*c^2*ap^2+8*cp*dp*f^4*fp^4*c^3*d*bp^2-8*cp*dp*f^4*fp^4*c*d^3*ap^2+8*cp*dp*f^4*a^3*b*bp^2-8*cp*dp*f^4*a*b^3*ap^2+8*cp*dp*f^4*a^2*fp^2*c*d*bp^2+8*cp*dp*f^4*a*b*fp^2*c^2*bp^2-8*cp*dp*f^4*a*b*fp^2*d^2*ap^2-8*cp*dp*f^4*b^2*fp^2*c*d*ap^2-8*dp^2*ap^2*f^2*a^2*fp^2*c^2-4*dp^2*ap^2*f^2*fp^4*c^4-4*dp^2*ap^2*f^4*a^2*fp^2*d^2-4*dp^2*ap^2*f^4*b^2*fp^2*c^2-12*dp^2*ap^2*f^4*fp^4*c^2*d^2-12*dp^2*ap^2*f^4*a^2*b^2-16*dp^2*ap^2*f^4*a*b*fp^2*c*d)*t^7+(8*a*b^3*ap^4+8*a^4*ap*bp^3+8*fp^4*c*d^3*ap^4+8*a^4*fpp^4*cp*dp^3+48*a^3*b*ap^2*bp^2+48*a^2*b^2*ap^3*bp+8*a*b^3*fpp^4*cp^4+8*fp^4*c^4*ap*bp^3-2*c*d*a^2*ap^4+2*c^2*a*b*ap^4+16*a^2*fp^2*c^2*fpp^4*cp*dp^3+16*a^2*fp^2*c^2*ap*bp^3+16*a^2*fp^2*d^2*fpp^4*cp^3*dp+16*a^2*fp^2*d^2*ap^3*bp+16*a^2*fp^2*c^2*ap*bp*fpp^2*dp^2+16*a^2*fp^2*c^2*bp^2*fpp^2*cp*dp+16*b^2*fp^2*c^2*ap^3*bp+16*b^2*fp^2*c^2*ap^2*fpp^2*cp*dp+16*b^2*fp^2*c^2*ap*bp*fpp^2*cp^2+16*a^2*fp^2*d^2*ap^2*fpp^2*cp*dp+16*a^2*fp^2*d^2*ap*bp*fpp^2*cp^2+16*b^2*fp^2*c^2*fpp^4*cp^3*dp+64*fp^4*c^3*d*ap*bp*fpp^2*cp*dp+48*fp^4*c^2*d^2*fpp^4*cp^3*dp+16*fp^4*c^3*d*ap^2*fpp^2*dp^2+16*fp^4*c^3*d*bp^2*fpp^2*cp^2+48*fp^4*c^3*d*fpp^4*cp^2*dp^2+48*fp^4*c^3*d*ap^2*bp^2+48*fp^4*c^2*d^2*ap^3*bp+48*fp^4*c^2*d^2*ap^2*fpp^2*cp*dp+48*fp^4*c^2*d^2*ap*bp*fpp^2*cp^2+16*fp^4*c*d^3*ap^2*fpp^2*cp^2+8*fp^4*c*d^3*fpp^4*cp^4+64*a^3*b*ap*bp*fpp^2*cp*dp+48*a^2*b^2*fpp^4*cp^3*dp+48*a^2*b^2*ap^2*fpp^2*cp*dp+48*a^2*b^2*ap*bp*fpp^2*cp^2+16*a*b^3*ap^2*fpp^2*cp^2+8*a^4*ap*bp*fpp^2*dp^2+8*a^4*bp^2*fpp^2*cp*dp+16*a^3*b*ap^2*fpp^2*dp^2+16*a^3*b*bp^2*fpp^2*cp^2+48*a^3*b*fpp^4*cp^2*dp^2+16*a^2*fp^2*c*d*ap^2*fpp^2*dp^2+16*a^2*fp^2*c*d*bp^2*fpp^2*cp^2+48*a^2*fp^2*c*d*fpp^4*cp^2*dp^2+48*a^2*fp^2*c*d*ap^2*bp^2+8*fp^4*c^4*fpp^4*cp*dp^3+8*fp^4*c^4*ap*bp*fpp^2*dp^2+8*fp^4*c^4*bp^2*fpp^2*cp*dp-4*c*d*a^2*ap^2*fpp^2*cp^2-2*c*d*a^2*fpp^4*cp^4+4*c^2*a*b*ap^2*fpp^2*cp^2+2*c^2*a*b*fpp^4*cp^4+16*c^2*f^2*b^2*fpp^4*cp^3*dp+64*a^2*fp^2*c*d*ap*bp*fpp^2*cp*dp+16*a*b*fp^2*c^2*ap^2*fpp^2*dp^2+16*a*b*fp^2*c^2*bp^2*fpp^2*cp^2+48*a*b*fp^2*c^2*fpp^4*cp^2*dp^2+48*a*b*fp^2*c^2*ap^2*bp^2+64*a*b*fp^2*c^2*ap*bp*fpp^2*cp*dp+64*a*b*fp^2*c*d*fpp^4*cp^3*dp+64*a*b*fp^2*c*d*ap^3*bp+64*a*b*fp^2*c*d*ap^2*fpp^2*cp*dp+64*a*b*fp^2*c*d*ap*bp*fpp^2*cp^2+16*a*b*fp^2*d^2*ap^2*fpp^2*cp^2+8*a*b*fp^2*d^2*ap^4+8*a*b*fp^2*d^2*fpp^4*cp^4+16*b^2*fp^2*c*d*ap^2*fpp^2*cp^2+8*b^2*fp^2*c*d*ap^4+8*b^2*fp^2*c*d*fpp^4*cp^4+24*c^2*f^2*a*b*ap^2*bp^2+32*c^2*f^2*a*b*ap*bp*fpp^2*cp*dp+2*c^2*f^4*a*b*fpp^4*dp^4+2*c^2*f^4*a*b*bp^4+4*c^2*f^4*a*b*bp^2*fpp^2*dp^2-2*c*d*f^4*a^2*fpp^4*dp^4-2*c*d*f^4*a^2*bp^4-4*c*d*f^4*a^2*bp^2*fpp^2*dp^2+4*c*d*f^4*b^2*ap^2*fpp^2*dp^2+4*c*d*f^4*b^2*bp^2*fpp^2*cp^2+12*c*d*f^4*b^2*fpp^4*cp^2*dp^2+12*c*d*f^4*b^2*ap^2*bp^2+16*c*d*f^4*b^2*ap*bp*fpp^2*cp*dp+16*c^2*f^2*b^2*ap^3*bp+16*c^2*f^2*b^2*ap^2*fpp^2*cp*dp+16*c^2*f^2*b^2*ap*bp*fpp^2*cp^2+8*c^2*f^4*b^2*fpp^4*cp*dp^3+8*c^2*f^4*b^2*ap*bp^3+8*c^2*f^4*b^2*ap*bp*fpp^2*dp^2+8*c^2*f^4*b^2*bp^2*fpp^2*cp*dp-8*c*d*f^2*a^2*ap^2*fpp^2*dp^2-8*c*d*f^2*a^2*bp^2*fpp^2*cp^2-24*c*d*f^2*a^2*fpp^4*cp^2*dp^2-24*c*d*f^2*a^2*ap^2*bp^2-32*c*d*f^2*a^2*ap*bp*fpp^2*cp*dp+8*c*d*f^2*b^2*ap^2*fpp^2*cp^2+4*c*d*f^2*b^2*ap^4+4*c*d*f^2*b^2*fpp^4*cp^4-2*cp*dp*a^4*ap^2+2*cp^2*a^4*ap*bp+8*c^2*f^2*a*b*ap^2*fpp^2*dp^2+8*c^2*f^2*a*b*bp^2*fpp^2*cp^2+24*c^2*f^2*a*b*fpp^4*cp^2*dp^2+2*cp^2*f^4*b^4*ap*bp-2*cp*dp*fp^4*c^4*ap^2+4*cp*dp*f^2*a^4*bp^2-2*cp*dp*f^4*b^4*ap^2+8*cp^2*f^2*a^2*fp^2*d^2*ap*bp+8*cp^2*f^2*b^2*fp^2*c^2*ap*bp+16*cp^2*f^2*fp^4*c^3*d*bp^2+24*cp^2*f^2*fp^4*c^2*d^2*ap*bp+16*cp^2*f^2*a^3*b*bp^2+24*cp^2*f^2*a^2*b^2*ap*bp+16*cp^2*f^2*a^2*fp^2*c*d*bp^2+16*cp^2*f^2*a*b*fp^2*c^2*bp^2+32*cp^2*f^2*a*b*fp^2*c*d*ap*bp-16*d^2*a^2*f^2*fpp^4*cp^3*dp-16*d^2*a^2*f^2*ap^3*bp-16*d^2*a^2*f^2*ap^2*fpp^2*cp*dp-16*d^2*a^2*f^2*ap*bp*fpp^2*cp^2-8*d^2*a^2*f^4*fpp^4*cp*dp^3-8*d^2*a^2*f^4*ap*bp^3-8*d^2*a^2*f^4*ap*bp*fpp^2*dp^2-8*d^2*a^2*f^4*bp^2*fpp^2*cp*dp-8*d^2*a*b*f^2*ap^2*fpp^2*cp^2-4*d^2*a*b*f^2*ap^4-4*d^2*a*b*f^2*fpp^4*cp^4-4*d^2*a*b*f^4*ap^2*fpp^2*dp^2-4*d^2*a*b*f^4*bp^2*fpp^2*cp^2-12*d^2*a*b*f^4*fpp^4*cp^2*dp^2-12*d^2*a*b*f^4*ap^2*bp^2-16*d^2*a*b*f^4*ap*bp*fpp^2*cp*dp+4*cp^2*a^2*fp^2*c^2*ap*bp+2*cp^2*fp^4*c^4*ap*bp-4*dp^2*ap*bp*f^4*b^2*fp^2*c^2-12*dp^2*ap*bp*f^4*fp^4*c^2*d^2-12*dp^2*ap*bp*f^4*a^2*b^2-16*dp^2*ap*bp*f^4*a*b*fp^2*c*d+8*cp^2*f^4*fp^4*c*d^3*bp^2+2*cp^2*f^4*fp^4*d^4*ap*bp+8*cp^2*f^4*a*b^3*bp^2+4*cp^2*f^4*b^2*fp^2*d^2*ap*bp+8*cp^2*f^4*a*b*fp^2*d^2*bp^2+8*cp^2*f^4*b^2*fp^2*c*d*bp^2-4*cp*dp*a^2*fp^2*c^2*ap^2+8*cp*dp*f^2*a^2*fp^2*c^2*bp^2-8*cp*dp*f^2*a^2*fp^2*d^2*ap^2-8*cp*dp*f^2*b^2*fp^2*c^2*ap^2-24*cp*dp*f^2*fp^4*c^2*d^2*ap^2-24*cp*dp*f^2*a^2*b^2*ap^2+4*cp*dp*f^2*fp^4*c^4*bp^2-32*cp*dp*f^2*a*b*fp^2*c*d*ap^2+4*cp*dp*f^4*a^2*fp^2*d^2*bp^2+4*cp*dp*f^4*b^2*fp^2*c^2*bp^2+12*cp*dp*f^4*fp^4*c^2*d^2*bp^2-2*cp*dp*f^4*fp^4*d^4*ap^2+12*cp*dp*f^4*a^2*b^2*bp^2-4*cp*dp*f^4*b^2*fp^2*d^2*ap^2+16*cp*dp*f^4*a*b*fp^2*c*d*bp^2-16*dp^2*ap^2*f^2*fp^4*c^3*d-16*dp^2*ap^2*f^2*a^3*b-16*dp^2*ap^2*f^2*a^2*fp^2*c*d-16*dp^2*ap^2*f^2*a*b*fp^2*c^2-8*dp^2*ap^2*f^4*fp^4*c*d^3-8*dp^2*ap^2*f^4*a*b^3-8*dp^2*ap^2*f^4*a*b*fp^2*d^2-8*dp^2*ap^2*f^4*b^2*fp^2*c*d-8*dp^2*ap*bp*f^2*a^2*fp^2*c^2-4*dp^2*ap*bp*f^2*a^4-4*dp^2*ap*bp*f^2*fp^4*c^4-4*dp^2*ap*bp*f^4*a^2*fp^2*d^2)*t^6+(2*fp^4*d^4*ap^4+2*a^4*fpp^4*dp^4+2*c^2*b^2*ap^4-2*d^2*a^2*ap^4+2*b^4*fpp^4*cp^4-2*dp^2*ap^2*a^4+2*cp^2*a^4*bp^2+2*fp^4*c^4*bp^4+2*a^4*bp^4+2*b^4*ap^4+4*a^2*fp^2*c^2*bp^4+4*a^4*bp^2*fpp^2*dp^2+2*fp^4*d^4*fpp^4*cp^4+4*b^4*ap^2*fpp^2*cp^2+32*a^3*b*ap*bp^3+72*a^2*b^2*ap^2*bp^2+32*a*b^3*ap^3*bp+4*b^2*fp^2*d^2*ap^4+2*fp^4*c^4*fpp^4*dp^4+2*c^2*f^4*b^2*bp^4+4*a^2*fp^2*c^2*fpp^4*dp^4+8*a^2*fp^2*c^2*bp^2*fpp^2*dp^2+24*a^2*fp^2*d^2*fpp^4*cp^2*dp^2+24*a^2*fp^2*d^2*ap^2*bp^2+8*a^2*fp^2*d^2*ap^2*fpp^2*dp^2+8*a^2*fp^2*d^2*bp^2*fpp^2*cp^2+24*b^2*fp^2*c^2*fpp^4*cp^2*dp^2+24*b^2*fp^2*c^2*ap^2*bp^2+32*a^2*fp^2*d^2*ap*bp*fpp^2*cp*dp+8*b^2*fp^2*c^2*ap^2*fpp^2*dp^2+8*b^2*fp^2*c^2*bp^2*fpp^2*cp^2+32*fp^4*c^3*d*ap*bp*fpp^2*dp^2+32*fp^4*c^3*d*bp^2*fpp^2*cp*dp+24*fp^4*c^2*d^2*ap^2*fpp^2*dp^2+24*fp^4*c^2*d^2*bp^2*fpp^2*cp^2+72*fp^4*c^2*d^2*fpp^4*cp^2*dp^2+32*b^2*fp^2*c^2*ap*bp*fpp^2*cp*dp+32*fp^4*c^3*d*fpp^4*cp*dp^3+32*fp^4*c^3*d*ap*bp^3+32*fp^4*c*d^3*ap^2*fpp^2*cp*dp+32*fp^4*c*d^3*ap*bp*fpp^2*cp^2+72*fp^4*c^2*d^2*ap^2*bp^2+96*fp^4*c^2*d^2*ap*bp*fpp^2*cp*dp+32*fp^4*c*d^3*fpp^4*cp^3*dp+32*fp^4*c*d^3*ap^3*bp+32*a^3*b*ap*bp*fpp^2*dp^2+32*a^3*b*bp^2*fpp^2*cp*dp+24*a^2*b^2*ap^2*fpp^2*dp^2+24*a^2*b^2*bp^2*fpp^2*cp^2+72*a^2*b^2*fpp^4*cp^2*dp^2+96*a^2*b^2*ap*bp*fpp^2*cp*dp+32*a*b^3*fpp^4*cp^3*dp+32*a*b^3*ap^2*fpp^2*cp*dp+32*a*b^3*ap*bp*fpp^2*cp^2+4*fp^4*d^4*ap^2*fpp^2*cp^2+32*a^3*b*fpp^4*cp*dp^3+32*a^2*fp^2*c*d*fpp^4*cp*dp^3+32*a^2*fp^2*c*d*ap*bp^3+8*b^2*fp^2*d^2*ap^2*fpp^2*cp^2+4*b^2*fp^2*d^2*fpp^4*cp^4+4*fp^4*c^4*bp^2*fpp^2*dp^2-8*c*d*a^2*fpp^4*cp^3*dp-8*c*d*a^2*ap^3*bp-8*c*d*a^2*ap^2*fpp^2*cp*dp-8*c*d*a^2*ap*bp*fpp^2*cp^2+8*c^2*a*b*fpp^4*cp^3*dp+8*c^2*a*b*ap^3*bp+8*c^2*a*b*ap^2*fpp^2*cp*dp+8*c^2*a*b*ap*bp*fpp^2*cp^2+8*c^2*f^2*b^2*ap^2*fpp^2*dp^2+8*c^2*f^2*b^2*bp^2*fpp^2*cp^2+24*c^2*f^2*b^2*fpp^4*cp^2*dp^2+32*a^2*fp^2*c*d*ap*bp*fpp^2*dp^2+32*a^2*fp^2*c*d*bp^2*fpp^2*cp*dp+32*a*b*fp^2*c^2*fpp^4*cp*dp^3+32*a*b*fp^2*c^2*ap*bp^3+32*a*b*fp^2*c^2*ap*bp*fpp^2*dp^2+32*a*b*fp^2*c^2*bp^2*fpp^2*cp*dp+32*a*b*fp^2*c*d*ap^2*fpp^2*dp^2+32*a*b*fp^2*c*d*bp^2*fpp^2*cp^2+96*a*b*fp^2*c*d*fpp^4*cp^2*dp^2+96*a*b*fp^2*c*d*ap^2*bp^2+128*a*b*fp^2*c*d*ap*bp*fpp^2*cp*dp+32*a*b*fp^2*d^2*fpp^4*cp^3*dp+32*a*b*fp^2*d^2*ap^3*bp+32*a*b*fp^2*d^2*ap^2*fpp^2*cp*dp+32*a*b*fp^2*d^2*ap*bp*fpp^2*cp^2+32*b^2*fp^2*c*d*fpp^4*cp^3*dp+32*b^2*fp^2*c*d*ap^3*bp+32*b^2*fp^2*c*d*ap^2*fpp^2*cp*dp+32*b^2*fp^2*c*d*ap*bp*fpp^2*cp^2+16*c^2*f^2*a*b*ap*bp^3+16*c^2*f^2*a*b*ap*bp*fpp^2*dp^2+16*c^2*f^2*a*b*bp^2*fpp^2*cp*dp+8*c*d*f^4*b^2*fpp^4*cp*dp^3+8*c*d*f^4*b^2*ap*bp^3+24*c^2*f^2*b^2*ap^2*bp^2+32*c^2*f^2*b^2*ap*bp*fpp^2*cp*dp+2*c^2*f^4*b^2*fpp^4*dp^4+4*c^2*f^4*b^2*bp^2*fpp^2*dp^2-16*c*d*f^2*a^2*fpp^4*cp*dp^3-16*c*d*f^2*a^2*ap*bp^3-16*c*d*f^2*a^2*ap*bp*fpp^2*dp^2-16*c*d*f^2*a^2*bp^2*fpp^2*cp*dp+16*c*d*f^2*b^2*fpp^4*cp^3*dp+16*c*d*f^2*b^2*ap^3*bp+16*c*d*f^2*b^2*ap^2*fpp^2*cp*dp+16*c*d*f^2*b^2*ap*bp*fpp^2*cp^2+4*c^2*b^2*ap^2*fpp^2*cp^2+2*c^2*b^2*fpp^4*cp^4-2*d^2*a^2*f^4*bp^4-2*d^2*a^2*fpp^4*cp^4+2*cp^2*fp^4*c^4*bp^2+2*cp^2*f^4*b^4*bp^2-2*dp^2*ap^2*f^4*b^4-2*dp^2*ap^2*fp^4*c^4+16*c^2*f^2*a*b*fpp^4*cp*dp^3-8*cp*dp*a^3*b*ap^2+8*cp^2*fp^4*c^3*d*ap*bp+8*cp^2*a^2*fp^2*c*d*ap*bp+8*cp^2*a*b*fp^2*c^2*ap*bp+8*cp^2*f^2*a^2*fp^2*d^2*bp^2+8*cp^2*f^2*b^2*fp^2*c^2*bp^2+24*cp^2*f^2*fp^4*c^2*d^2*bp^2+16*cp^2*f^2*fp^4*c*d^3*ap*bp+24*cp^2*f^2*a^2*b^2*bp^2+16*cp^2*f^2*a*b^3*ap*bp+32*cp^2*f^2*a*b*fp^2*c*d*bp^2+16*cp^2*f^2*a*b*fp^2*d^2*ap*bp+16*cp^2*f^2*b^2*fp^2*c*d*ap*bp+8*c*d*f^4*b^2*ap*bp*fpp^2*dp^2+8*c*d*f^4*b^2*bp^2*fpp^2*cp*dp-8*d^2*a^2*f^2*ap^2*fpp^2*dp^2-8*d^2*a^2*f^2*bp^2*fpp^2*cp^2-24*d^2*a^2*f^2*fpp^4*cp^2*dp^2-24*d^2*a^2*f^2*ap^2*bp^2-32*d^2*a^2*f^2*ap*bp*fpp^2*cp*dp-2*d^2*a^2*f^4*fpp^4*dp^4-4*d^2*a^2*f^4*bp^2*fpp^2*dp^2-4*d^2*a^2*ap^2*fpp^2*cp^2-16*d^2*a*b*f^2*fpp^4*cp^3*dp-16*d^2*a*b*f^2*ap^3*bp-16*d^2*a*b*f^2*ap^2*fpp^2*cp*dp-16*d^2*a*b*f^2*ap*bp*fpp^2*cp^2-8*d^2*a*b*f^4*fpp^4*cp*dp^3-8*d^2*a*b*f^4*ap*bp^3-8*d^2*a*b*f^4*ap*bp*fpp^2*dp^2-8*d^2*a*b*f^4*bp^2*fpp^2*cp*dp+4*cp^2*a^2*fp^2*c^2*bp^2+8*cp^2*a^3*b*ap*bp-8*dp^2*ap*bp*f^4*fp^4*c*d^3-8*dp^2*ap*bp*f^4*a*b^3-8*dp^2*ap*bp*f^4*a*b*fp^2*d^2-8*dp^2*ap*bp*f^4*b^2*fp^2*c*d+2*cp^2*f^4*fp^4*d^4*bp^2+4*cp^2*f^4*b^2*fp^2*d^2*bp^2-8*cp*dp*fp^4*c^3*d*ap^2-8*cp*dp*a^2*fp^2*c*d*ap^2-8*cp*dp*a*b*fp^2*c^2*ap^2+16*cp*dp*f^2*fp^4*c^3*d*bp^2-16*cp*dp*f^2*fp^4*c*d^3*ap^2+16*cp*dp*f^2*a^3*b*bp^2-16*cp*dp*f^2*a*b^3*ap^2+16*cp*dp*f^2*a^2*fp^2*c*d*bp^2+16*cp*dp*f^2*a*b*fp^2*c^2*bp^2-16*cp*dp*f^2*a*b*fp^2*d^2*ap^2-16*cp*dp*f^2*b^2*fp^2*c*d*ap^2+8*cp*dp*f^4*fp^4*c*d^3*bp^2+8*cp*dp*f^4*a*b^3*bp^2+8*cp*dp*f^4*a*b*fp^2*d^2*bp^2+8*cp*dp*f^4*b^2*fp^2*c*d*bp^2-8*dp^2*ap^2*f^2*a^2*fp^2*d^2-8*dp^2*ap^2*f^2*b^2*fp^2*c^2-24*dp^2*ap^2*f^2*fp^4*c^2*d^2-24*dp^2*ap^2*f^2*a^2*b^2-32*dp^2*ap^2*f^2*a*b*fp^2*c*d-2*dp^2*ap^2*f^4*fp^4*d^4-4*dp^2*ap^2*f^4*b^2*fp^2*d^2-4*dp^2*ap^2*a^2*fp^2*c^2-16*dp^2*ap*bp*f^2*fp^4*c^3*d-16*dp^2*ap*bp*f^2*a^3*b-16*dp^2*ap*bp*f^2*a^2*fp^2*c*d-16*dp^2*ap*bp*f^2*a*b*fp^2*c^2)*t^5+(8*b^4*ap^3*bp+8*a^3*b*bp^4+8*fp^4*c^3*d*bp^4+8*fp^4*d^4*ap^3*bp+8*b^4*fpp^4*cp^3*dp+8*a^3*b*fpp^4*dp^4+48*a^2*b^2*ap*bp^3+48*a*b^3*ap^2*bp^2+2*c*d*b^2*ap^4+8*c^2*b^2*ap^3*bp+16*a^2*fp^2*d^2*fpp^4*cp*dp^3+16*b^2*fp^2*c^2*fpp^4*cp*dp^3+16*b^2*fp^2*c^2*ap*bp^3+16*a^2*fp^2*d^2*ap*bp^3+16*a^2*fp^2*d^2*ap*bp*fpp^2*dp^2+16*a^2*fp^2*d^2*bp^2*fpp^2*cp*dp+48*fp^4*c^2*d^2*fpp^4*cp*dp^3+16*b^2*fp^2*c^2*ap*bp*fpp^2*dp^2+16*b^2*fp^2*c^2*bp^2*fpp^2*cp*dp+8*fp^4*c^3*d*fpp^4*dp^4+16*fp^4*c^3*d*bp^2*fpp^2*dp^2+64*fp^4*c*d^3*ap*bp*fpp^2*cp*dp+48*fp^4*c^2*d^2*ap*bp^3+48*fp^4*c^2*d^2*ap*bp*fpp^2*dp^2+48*fp^4*c^2*d^2*bp^2*fpp^2*cp*dp+16*fp^4*c*d^3*ap^2*fpp^2*dp^2+16*fp^4*c*d^3*bp^2*fpp^2*cp^2+48*fp^4*c*d^3*fpp^4*cp^2*dp^2+48*fp^4*c*d^3*ap^2*bp^2+16*a^3*b*bp^2*fpp^2*dp^2+48*a^2*b^2*fpp^4*cp*dp^3+48*a^2*b^2*ap*bp*fpp^2*dp^2+48*a^2*b^2*bp^2*fpp^2*cp*dp+16*a*b^3*ap^2*fpp^2*dp^2+16*a*b^3*bp^2*fpp^2*cp^2+48*a*b^3*fpp^4*cp^2*dp^2+64*a*b^3*ap*bp*fpp^2*cp*dp+8*fp^4*d^4*fpp^4*cp^3*dp+8*fp^4*d^4*ap^2*fpp^2*cp*dp+8*fp^4*d^4*ap*bp*fpp^2*cp^2+8*b^4*ap^2*fpp^2*cp*dp+8*b^4*ap*bp*fpp^2*cp^2+8*a^2*fp^2*c*d*fpp^4*dp^4+8*a^2*fp^2*c*d*bp^4+16*a^2*fp^2*c*d*bp^2*fpp^2*dp^2+16*b^2*fp^2*d^2*fpp^4*cp^3*dp+16*b^2*fp^2*d^2*ap^3*bp+16*b^2*fp^2*d^2*ap^2*fpp^2*cp*dp+16*b^2*fp^2*d^2*ap*bp*fpp^2*cp^2+2*c*d*b^2*fpp^4*cp^4-4*c*d*a^2*ap^2*fpp^2*dp^2-4*c*d*a^2*bp^2*fpp^2*cp^2-12*c*d*a^2*fpp^4*cp^2*dp^2-12*c*d*a^2*ap^2*bp^2-16*c*d*a^2*ap*bp*fpp^2*cp*dp+4*c^2*a*b*ap^2*fpp^2*dp^2+4*c^2*a*b*bp^2*fpp^2*cp^2+12*c^2*a*b*fpp^4*cp^2*dp^2+12*c^2*a*b*ap^2*bp^2+16*c^2*a*b*ap*bp*fpp^2*cp*dp+16*c^2*f^2*b^2*fpp^4*cp*dp^3+8*a*b*fp^2*c^2*fpp^4*dp^4+8*a*b*fp^2*c^2*bp^4+16*a*b*fp^2*c^2*bp^2*fpp^2*dp^2+64*a*b*fp^2*c*d*fpp^4*cp*dp^3+64*a*b*fp^2*c*d*ap*bp^3+64*a*b*fp^2*c*d*ap*bp*fpp^2*dp^2+64*a*b*fp^2*c*d*bp^2*fpp^2*cp*dp+16*a*b*fp^2*d^2*ap^2*fpp^2*dp^2+16*a*b*fp^2*d^2*bp^2*fpp^2*cp^2+48*a*b*fp^2*d^2*fpp^4*cp^2*dp^2+48*a*b*fp^2*d^2*ap^2*bp^2+64*a*b*fp^2*d^2*ap*bp*fpp^2*cp*dp+16*b^2*fp^2*c*d*ap^2*fpp^2*dp^2+16*b^2*fp^2*c*d*bp^2*fpp^2*cp^2+48*b^2*fp^2*c*d*fpp^4*cp^2*dp^2+48*b^2*fp^2*c*d*ap^2*bp^2+64*b^2*fp^2*c*d*ap*bp*fpp^2*cp*dp+4*c*d*b^2*ap^2*fpp^2*cp^2+4*c^2*f^2*a*b*bp^4+8*c^2*f^2*a*b*bp^2*fpp^2*dp^2+2*c*d*f^4*b^2*fpp^4*dp^4+2*c*d*f^4*b^2*bp^4+4*c*d*f^4*b^2*bp^2*fpp^2*dp^2+16*c^2*f^2*b^2*ap*bp^3+16*c^2*f^2*b^2*ap*bp*fpp^2*dp^2+16*c^2*f^2*b^2*bp^2*fpp^2*cp*dp-4*c*d*f^2*a^2*fpp^4*dp^4-4*c*d*f^2*a^2*bp^4-8*c*d*f^2*a^2*bp^2*fpp^2*dp^2+8*c*d*f^2*b^2*ap^2*fpp^2*dp^2+8*c*d*f^2*b^2*bp^2*fpp^2*cp^2+24*c*d*f^2*b^2*fpp^4*cp^2*dp^2+24*c*d*f^2*b^2*ap^2*bp^2+32*c*d*f^2*b^2*ap*bp*fpp^2*cp*dp+8*c^2*b^2*fpp^4*cp^3*dp-8*d^2*a^2*ap^3*bp-2*d^2*a*b*ap^4+2*cp*dp*a^4*bp^2+8*cp^2*a^3*b*bp^2-8*dp^2*ap^2*a^3*b-2*dp^2*ap*bp*a^4+8*c^2*b^2*ap^2*fpp^2*cp*dp+8*c^2*b^2*ap*bp*fpp^2*cp^2+4*c^2*f^2*a*b*fpp^4*dp^4-12*cp*dp*a^2*b^2*ap^2+2*cp*dp*fp^4*c^4*bp^2-4*cp*dp*f^2*b^4*ap^2+2*cp*dp*f^4*b^4*bp^2+4*cp^2*b^2*fp^2*c^2*ap*bp+8*cp^2*fp^4*c^3*d*bp^2+12*cp^2*fp^4*c^2*d^2*ap*bp+8*cp^2*a^2*fp^2*c*d*bp^2+8*cp^2*a*b*fp^2*c^2*bp^2+16*cp^2*a*b*fp^2*c*d*ap*bp+16*cp^2*f^2*fp^4*c*d^3*bp^2+4*cp^2*f^2*fp^4*d^4*ap*bp+16*cp^2*f^2*a*b^3*bp^2+8*cp^2*f^2*b^2*fp^2*d^2*ap*bp+16*cp^2*f^2*a*b*fp^2*d^2*bp^2+16*cp^2*f^2*b^2*fp^2*c*d*bp^2-16*d^2*a^2*f^2*fpp^4*cp*dp^3-16*d^2*a^2*f^2*ap*bp^3-16*d^2*a^2*f^2*ap*bp*fpp^2*dp^2-16*d^2*a^2*f^2*bp^2*fpp^2*cp*dp-8*d^2*a^2*fpp^4*cp^3*dp-8*d^2*a^2*ap^2*fpp^2*cp*dp-8*d^2*a^2*ap*bp*fpp^2*cp^2-4*d^2*a*b*ap^2*fpp^2*cp^2-2*d^2*a*b*fpp^4*cp^4-8*d^2*a*b*f^2*ap^2*fpp^2*dp^2-8*d^2*a*b*f^2*bp^2*fpp^2*cp^2-24*d^2*a*b*f^2*fpp^4*cp^2*dp^2-24*d^2*a*b*f^2*ap^2*bp^2-32*d^2*a*b*f^2*ap*bp*fpp^2*cp*dp-2*d^2*a*b*f^4*fpp^4*dp^4-2*d^2*a*b*f^4*bp^4-4*d^2*a*b*f^4*bp^2*fpp^2*dp^2+4*cp^2*a^2*fp^2*d^2*ap*bp+12*cp^2*a^2*b^2*ap*bp+4*cp^2*f^2*b^4*ap*bp-2*dp^2*ap*bp*f^4*fp^4*d^4-2*dp^2*ap*bp*f^4*b^4-4*dp^2*ap*bp*f^4*b^2*fp^2*d^2+4*cp*dp*a^2*fp^2*c^2*bp^2-4*cp*dp*a^2*fp^2*d^2*ap^2-4*cp*dp*b^2*fp^2*c^2*ap^2-12*cp*dp*fp^4*c^2*d^2*ap^2-16*cp*dp*a*b*fp^2*c*d*ap^2+8*cp*dp*f^2*a^2*fp^2*d^2*bp^2+8*cp*dp*f^2*b^2*fp^2*c^2*bp^2+24*cp*dp*f^2*fp^4*c^2*d^2*bp^2-4*cp*dp*f^2*fp^4*d^4*ap^2+24*cp*dp*f^2*a^2*b^2*bp^2-8*cp*dp*f^2*b^2*fp^2*d^2*ap^2+32*cp*dp*f^2*a*b*fp^2*c*d*bp^2+2*cp*dp*f^4*fp^4*d^4*bp^2+4*cp*dp*f^4*b^2*fp^2*d^2*bp^2-16*dp^2*ap^2*f^2*fp^4*c*d^3-16*dp^2*ap^2*f^2*a*b^3-16*dp^2*ap^2*f^2*a*b*fp^2*d^2-16*dp^2*ap^2*f^2*b^2*fp^2*c*d-8*dp^2*ap^2*fp^4*c^3*d-8*dp^2*ap^2*a^2*fp^2*c*d-8*dp^2*ap^2*a*b*fp^2*c^2-4*dp^2*ap*bp*a^2*fp^2*c^2-2*dp^2*ap*bp*fp^4*c^4-8*dp^2*ap*bp*f^2*a^2*fp^2*d^2-8*dp^2*ap*bp*f^2*b^2*fp^2*c^2-24*dp^2*ap*bp*f^2*fp^4*c^2*d^2-24*dp^2*ap*bp*f^2*a^2*b^2-32*dp^2*ap*bp*f^2*a*b*fp^2*c*d)*t^4+(12*a^2*b^2*bp^4+12*b^4*ap^2*bp^2+4*a^2*fp^2*d^2*bp^4+4*b^2*fp^2*c^2*bp^4+12*fp^4*c^2*d^2*bp^4+12*fp^4*d^4*ap^2*bp^2+4*b^4*ap^2*fpp^2*dp^2+4*b^4*bp^2*fpp^2*cp^2+12*b^4*fpp^4*cp^2*dp^2+12*a^2*b^2*fpp^4*dp^4+32*a*b^3*ap*bp^3+4*c^2*f^2*b^2*bp^4+12*c^2*b^2*ap^2*bp^2+4*a^2*fp^2*d^2*fpp^4*dp^4+4*b^2*fp^2*c^2*fpp^4*dp^4+8*b^2*fp^2*c^2*bp^2*fpp^2*dp^2+8*a^2*fp^2*d^2*bp^2*fpp^2*dp^2+12*fp^4*c^2*d^2*fpp^4*dp^4+32*fp^4*c*d^3*ap*bp*fpp^2*dp^2+32*fp^4*c*d^3*bp^2*fpp^2*cp*dp+24*fp^4*c^2*d^2*bp^2*fpp^2*dp^2+32*fp^4*c*d^3*fpp^4*cp*dp^3+32*fp^4*c*d^3*ap*bp^3+24*a^2*b^2*bp^2*fpp^2*dp^2+32*a*b^3*fpp^4*cp*dp^3+4*fp^4*d^4*ap^2*fpp^2*dp^2+4*fp^4*d^4*bp^2*fpp^2*cp^2+12*fp^4*d^4*fpp^4*cp^2*dp^2+16*fp^4*d^4*ap*bp*fpp^2*cp*dp+16*b^4*ap*bp*fpp^2*cp*dp+32*a*b^3*ap*bp*fpp^2*dp^2+32*a*b^3*bp^2*fpp^2*cp*dp+8*b^2*fp^2*d^2*ap^2*fpp^2*dp^2+8*b^2*fp^2*d^2*bp^2*fpp^2*cp^2+24*b^2*fp^2*d^2*fpp^4*cp^2*dp^2+24*b^2*fp^2*d^2*ap^2*bp^2+32*b^2*fp^2*d^2*ap*bp*fpp^2*cp*dp+8*c*d*b^2*fpp^4*cp^3*dp+8*c*d*b^2*ap^3*bp+8*c*d*b^2*ap^2*fpp^2*cp*dp+8*c*d*b^2*ap*bp*fpp^2*cp^2-8*c*d*a^2*fpp^4*cp*dp^3-8*c*d*a^2*ap*bp^3-8*c*d*a^2*ap*bp*fpp^2*dp^2-8*c*d*a^2*bp^2*fpp^2*cp*dp+8*c^2*a*b*fpp^4*cp*dp^3+8*c^2*a*b*ap*bp^3+8*c^2*a*b*ap*bp*fpp^2*dp^2+8*c^2*a*b*bp^2*fpp^2*cp*dp+16*a*b*fp^2*c*d*fpp^4*dp^4+16*a*b*fp^2*c*d*bp^4+32*a*b*fp^2*c*d*bp^2*fpp^2*dp^2+32*a*b*fp^2*d^2*fpp^4*cp*dp^3+32*a*b*fp^2*d^2*ap*bp^3+32*a*b*fp^2*d^2*ap*bp*fpp^2*dp^2+32*a*b*fp^2*d^2*bp^2*fpp^2*cp*dp+32*b^2*fp^2*c*d*fpp^4*cp*dp^3+32*b^2*fp^2*c*d*ap*bp^3+32*b^2*fp^2*c*d*ap*bp*fpp^2*dp^2+32*b^2*fp^2*c*d*bp^2*fpp^2*cp*dp+4*c^2*f^2*b^2*fpp^4*dp^4+8*c^2*f^2*b^2*bp^2*fpp^2*dp^2+16*c*d*f^2*b^2*fpp^4*cp*dp^3+16*c*d*f^2*b^2*ap*bp^3+16*c*d*f^2*b^2*ap*bp*fpp^2*dp^2+16*c*d*f^2*b^2*bp^2*fpp^2*cp*dp+4*c^2*b^2*ap^2*fpp^2*dp^2+4*c^2*b^2*bp^2*fpp^2*cp^2+12*c^2*b^2*fpp^4*cp^2*dp^2-4*d^2*a^2*f^2*bp^4-12*d^2*a^2*ap^2*bp^2+12*cp^2*a^2*b^2*bp^2+4*cp^2*f^2*b^4*bp^2-4*dp^2*ap^2*f^2*b^4-12*dp^2*ap^2*a^2*b^2+16*c^2*b^2*ap*bp*fpp^2*cp*dp+8*cp*dp*a^3*b*bp^2-8*cp*dp*a*b^3*ap^2+4*cp^2*b^2*fp^2*c^2*bp^2+12*cp^2*fp^4*c^2*d^2*bp^2+8*cp^2*fp^4*c*d^3*ap*bp+16*cp^2*a*b*fp^2*c*d*bp^2+8*cp^2*a*b*fp^2*d^2*ap*bp+8*cp^2*b^2*fp^2*c*d*ap*bp+4*cp^2*f^2*fp^4*d^4*bp^2+8*cp^2*f^2*b^2*fp^2*d^2*bp^2-4*d^2*a^2*f^2*fpp^4*dp^4-8*d^2*a^2*f^2*bp^2*fpp^2*dp^2-4*d^2*a^2*ap^2*fpp^2*dp^2-4*d^2*a^2*bp^2*fpp^2*cp^2-12*d^2*a^2*fpp^4*cp^2*dp^2-16*d^2*a^2*ap*bp*fpp^2*cp*dp-8*d^2*a*b*fpp^4*cp^3*dp-8*d^2*a*b*ap^3*bp-8*d^2*a*b*ap^2*fpp^2*cp*dp-8*d^2*a*b*ap*bp*fpp^2*cp^2-16*d^2*a*b*f^2*fpp^4*cp*dp^3-16*d^2*a*b*f^2*ap*bp^3-16*d^2*a*b*f^2*ap*bp*fpp^2*dp^2-16*d^2*a*b*f^2*bp^2*fpp^2*cp*dp+4*cp^2*a^2*fp^2*d^2*bp^2+8*cp^2*a*b^3*ap*bp+8*cp*dp*fp^4*c^3*d*bp^2-8*cp*dp*fp^4*c*d^3*ap^2+8*cp*dp*a^2*fp^2*c*d*bp^2+8*cp*dp*a*b*fp^2*c^2*bp^2-8*cp*dp*a*b*fp^2*d^2*ap^2-8*cp*dp*b^2*fp^2*c*d*ap^2+16*cp*dp*f^2*fp^4*c*d^3*bp^2+16*cp*dp*f^2*a*b^3*bp^2+16*cp*dp*f^2*a*b*fp^2*d^2*bp^2+16*cp*dp*f^2*b^2*fp^2*c*d*bp^2-4*dp^2*ap^2*f^2*fp^4*d^4-8*dp^2*ap^2*f^2*b^2*fp^2*d^2-4*dp^2*ap^2*a^2*fp^2*d^2-4*dp^2*ap^2*b^2*fp^2*c^2-12*dp^2*ap^2*fp^4*c^2*d^2-16*dp^2*ap^2*a*b*fp^2*c*d-8*dp^2*ap*bp*fp^4*c^3*d-8*dp^2*ap*bp*a^3*b-8*dp^2*ap*bp*a^2*fp^2*c*d-8*dp^2*ap*bp*a*b*fp^2*c^2-16*dp^2*ap*bp*f^2*fp^4*c*d^3-16*dp^2*ap*bp*f^2*a*b^3-16*dp^2*ap*bp*f^2*a*b*fp^2*d^2-16*dp^2*ap*bp*f^2*b^2*fp^2*c*d)*t^3+(8*b^4*ap*bp^3+8*a*b^3*bp^4+8*fp^4*c*d^3*bp^4+8*fp^4*d^4*ap*bp^3+8*b^4*fpp^4*cp*dp^3+8*a*b^3*fpp^4*dp^4-2*c*d*a^2*bp^4+2*c^2*a*b*bp^4+8*fp^4*c*d^3*fpp^4*dp^4+16*fp^4*c*d^3*bp^2*fpp^2*dp^2+16*a*b^3*bp^2*fpp^2*dp^2+8*fp^4*d^4*fpp^4*cp*dp^3+8*fp^4*d^4*ap*bp*fpp^2*dp^2+8*fp^4*d^4*bp^2*fpp^2*cp*dp+8*b^4*ap*bp*fpp^2*dp^2+8*b^4*bp^2*fpp^2*cp*dp+16*b^2*fp^2*d^2*fpp^4*cp*dp^3+16*b^2*fp^2*d^2*ap*bp^3+16*b^2*fp^2*d^2*ap*bp*fpp^2*dp^2+16*b^2*fp^2*d^2*bp^2*fpp^2*cp*dp+12*c*d*b^2*fpp^4*cp^2*dp^2+12*c*d*b^2*ap^2*bp^2+16*c*d*b^2*ap*bp*fpp^2*cp*dp-2*c*d*a^2*fpp^4*dp^4-4*c*d*a^2*bp^2*fpp^2*dp^2+2*c^2*a*b*fpp^4*dp^4+4*c^2*a*b*bp^2*fpp^2*dp^2+8*a*b*fp^2*d^2*fpp^4*dp^4+8*a*b*fp^2*d^2*bp^4+16*a*b*fp^2*d^2*bp^2*fpp^2*dp^2+8*b^2*fp^2*c*d*fpp^4*dp^4+8*b^2*fp^2*c*d*bp^4+16*b^2*fp^2*c*d*bp^2*fpp^2*dp^2+4*c*d*b^2*ap^2*fpp^2*dp^2+4*c*d*b^2*bp^2*fpp^2*cp^2+4*c*d*f^2*b^2*fpp^4*dp^4+4*c*d*f^2*b^2*bp^4+8*c*d*f^2*b^2*bp^2*fpp^2*dp^2+8*c^2*b^2*fpp^4*cp*dp^3+8*c^2*b^2*ap*bp^3-8*d^2*a^2*ap*bp^3-2*cp*dp*b^4*ap^2+2*cp^2*b^4*ap*bp+8*cp^2*a*b^3*bp^2-8*dp^2*ap^2*a*b^3+8*c^2*b^2*ap*bp*fpp^2*dp^2+8*c^2*b^2*bp^2*fpp^2*cp*dp+12*cp*dp*a^2*b^2*bp^2-4*cp*dp*b^2*fp^2*d^2*ap^2+4*cp*dp*f^2*b^4*bp^2+8*cp^2*fp^4*c*d^3*bp^2+4*cp^2*b^2*fp^2*d^2*ap*bp+8*cp^2*a*b*fp^2*d^2*bp^2+8*cp^2*b^2*fp^2*c*d*bp^2-8*d^2*a^2*fpp^4*cp*dp^3-8*d^2*a^2*ap*bp*fpp^2*dp^2-8*d^2*a^2*bp^2*fpp^2*cp*dp-4*d^2*a*b*ap^2*fpp^2*dp^2-4*d^2*a*b*bp^2*fpp^2*cp^2-12*d^2*a*b*fpp^4*cp^2*dp^2-12*d^2*a*b*ap^2*bp^2-16*d^2*a*b*ap*bp*fpp^2*cp*dp-4*d^2*a*b*f^2*fpp^4*dp^4-4*d^2*a*b*f^2*bp^4-8*d^2*a*b*f^2*bp^2*fpp^2*dp^2-2*cp*dp*fp^4*d^4*ap^2+2*cp^2*fp^4*d^4*ap*bp+4*cp*dp*a^2*fp^2*d^2*bp^2+4*cp*dp*b^2*fp^2*c^2*bp^2+12*cp*dp*fp^4*c^2*d^2*bp^2+16*cp*dp*a*b*fp^2*c*d*bp^2+4*cp*dp*f^2*fp^4*d^4*bp^2+8*cp*dp*f^2*b^2*fp^2*d^2*bp^2-8*dp^2*ap^2*fp^4*c*d^3-8*dp^2*ap^2*a*b*fp^2*d^2-8*dp^2*ap^2*b^2*fp^2*c*d-4*dp^2*ap*bp*a^2*fp^2*d^2-4*dp^2*ap*bp*b^2*fp^2*c^2-12*dp^2*ap*bp*fp^4*c^2*d^2-12*dp^2*ap*bp*a^2*b^2-16*dp^2*ap*bp*a*b*fp^2*c*d-4*dp^2*ap*bp*f^2*fp^4*d^4-4*dp^2*ap*bp*f^2*b^4-8*dp^2*ap*bp*f^2*b^2*fp^2*d^2)*t^2+(-2*d^2*a^2*bp^4-2*dp^2*ap^2*b^4+2*fp^4*d^4*fpp^4*dp^4+4*b^4*bp^2*fpp^2*dp^2+4*b^2*fp^2*d^2*bp^4+2*b^4*bp^4+2*cp^2*b^4*bp^2+2*c^2*b^2*bp^4+2*fp^4*d^4*bp^4+2*b^4*fpp^4*dp^4+4*fp^4*d^4*bp^2*fpp^2*dp^2+4*b^2*fp^2*d^2*fpp^4*dp^4+8*b^2*fp^2*d^2*bp^2*fpp^2*dp^2+2*c^2*b^2*fpp^4*dp^4+8*c*d*b^2*fpp^4*cp*dp^3+8*c*d*b^2*ap*bp^3+8*c*d*b^2*ap*bp*fpp^2*dp^2+8*c*d*b^2*bp^2*fpp^2*cp*dp-2*d^2*a^2*fpp^4*dp^4+2*cp^2*fp^4*d^4*bp^2-2*dp^2*ap^2*fp^4*d^4+4*c^2*b^2*bp^2*fpp^2*dp^2+8*cp*dp*a*b^3*bp^2+4*cp^2*b^2*fp^2*d^2*bp^2-4*d^2*a^2*bp^2*fpp^2*dp^2-8*d^2*a*b*fpp^4*cp*dp^3-8*d^2*a*b*ap*bp^3-8*d^2*a*b*ap*bp*fpp^2*dp^2-8*d^2*a*b*bp^2*fpp^2*cp*dp+8*cp*dp*fp^4*c*d^3*bp^2+8*cp*dp*a*b*fp^2*d^2*bp^2+8*cp*dp*b^2*fp^2*c*d*bp^2-4*dp^2*ap^2*b^2*fp^2*d^2-8*dp^2*ap*bp*fp^4*c*d^3-8*dp^2*ap*bp*a*b^3-8*dp^2*ap*bp*a*b*fp^2*d^2-8*dp^2*ap*bp*b^2*fp^2*c*d)*t-2*dp^2*ap*bp*fp^4*d^4+2*cp*dp*fp^4*d^4*bp^2-2*d^2*a*b*bp^4+4*c*d*b^2*bp^2*fpp^2*dp^2+2*c*d*b^2*fpp^4*dp^4+2*cp*dp*b^4*bp^2-4*dp^2*ap*bp*b^2*fp^2*d^2-2*d^2*a*b*fpp^4*dp^4-2*dp^2*ap*bp*b^4-4*d^2*a*b*bp^2*fpp^2*dp^2+2*c*d*b^2*bp^4+4*cp*dp*b^2*fp^2*d^2*bp^2