Question: solving ODE system with boundary conditions

Hi,

I need some help.  I have a system of ODE's subject to a system of Boundary Conditions.  I can't figure out the sequence of commands to get MAPLE to generate a solution.

ODE System:

SYS1 := {diff((C[10])(z), `$`(z, 2)) = (BR[1]+BR[2])*(C[10])(z)-BR[3]-(BR[4]+BR[5])*C[50], diff((C[51])(z), `$`(z, 2)) = Ped*u[0]*C[50*x]-BR[5]*(C[10])(z)+BR[3]*C[50]}

Boundary Conditions:  I am going to be evaluating from z=s to z=h

BC1 := {(C[10])(h) = 1, diff((C[10])(s), s) = 0, diff((C[51])(h), h) = 0, diff((C[51])(s), s) = Da[1]*(C[50]-J3)}

If I just run dsolve on the system, I get

SYS1 := {(C[51])(z) = Int((BR[5]*_C4*BR[1]*cos(sqrt(-BR[1]-BR[2])*z)+BR[5]*_C4*BR[2]*cos(sqrt(-BR[1]-BR[2])*z)-BR[5]*_C3*BR[1]*sin(sqrt(-BR[1]-BR[2])*z)-BR[5]*_C3*BR[2]*sin(sqrt(-BR[1]-BR[2])*z)-BR[5]*C[50]*BR[4]*z*sqrt(-BR[1]-BR[2])-BR[5]*BR[3]*z*sqrt(-BR[1]-BR[2])-C[50]*BR[5]^2*z*sqrt(-BR[1]-BR[2])+z*sqrt(-BR[1]-BR[2])*Ped*u[0]*C[50*x]*BR[1]+z*sqrt(-BR[1]-BR[2])*Ped*u[0]*C[50*x]*BR[2]+z*sqrt(-BR[1]-BR[2])*BR[3]*C[50]*BR[1]+z*sqrt(-BR[1]-BR[2])*BR[3]*C[50]*BR[2])/((BR[1]+BR[2])*sqrt(-BR[1]-BR[2])), z)+_C1*z+_C2,

(C[10])(z) = sin(sqrt(-BR[1]-BR[2])*z)*_C4+cos(sqrt(-BR[1]-BR[2])*z)*_C3+((BR[4]+BR[5])*C[50]+BR[3])/(BR[1]+BR[2])}

Question 1:

Why didn't it C[51] integrate twice?

Question 2:

How do I solve the system and apply the boundary conditions to solve for the constants of integration?

thanks much

Kimberly

Please Wait...